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Inversion of the Bloch equations withT2 relaxation: An application of the dressing method
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The Bloch equations, with time-varying driving field, andT2 relaxation, are expressed as a scattering
problem, withG251/T2 as the scattering parameter, or eigenvalue. When the rf pulse, describing the driving
field, is real, this system is equivalent to the 232 Zakharov-Shabat eigenvalue problem. In general, for
complex rf pulses, the system is a third-order scattering problem. These systems can be inverted, to provide the
rf pulse needed to obtain a given magnetization response as a function ofG2. In particular, the class of ‘‘soliton
pulses’’ are described, which have utility asT2-selective pulses. For the third-order case, the dressing method
is used to calculate these pulses. Constraints on the dressing data used in this method are derived, as a
consequence of the structure of the Bloch equations. Nonlinear superposition formulas are obtained, which
enable soliton pulses to be calculated efficiently. Examples of one-soliton and three-soliton pulses are given. A
closed-form expression for the effect ofT1 relaxation for the one-soliton pulse is obtained. The pulses are
tested numerically and experimentally, and found to work as predicted.@S1063-651X~98!03006-2#

PACS number~s!: 42.65.Tg, 03.65.Fd, 03.80.1r, 33.25.1k
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I. INTRODUCTION

This paper is concerned with the determination
T2-selective pulses for systems obeying the Bloch equat

]m

]t
5Am1b, ~1.1a!

where

A5S 2G2 2v3~ t ! v2~ t !

v3~ t ! 2G2 2v1~ t !

2v2~ t ! v1~ t ! 2G1
D and b5S 0

0

G1
D .

~1.1b!

These equations are found in studies of nuclear magn
resonance~nmr! @1–3#, electron paramagnetic resonance@4#,
quantum electronics@5#, and optics @6#. In nmr, m(t)T

5(m1 ,m2 ,m3) corresponds to the bulk magnetization of t
sample, which is taken to have an equilibrium value ofmT

5(0,0,1) (T denotes the transpose of a vector or matri!.
V(t)T5„v1(t),v2(t),v3(t)… is the driving field of the sys-
tem. It is usually decomposed into the complex radiof
quency ~rf! pulse v5v11 iv2 and the detuning~or reso-
nance offset! v3. The constantsG1 andG2 are theT1 andT2
relaxation rates, respectively. This terminology will be us
even though the results are not specific to nmr.

In more detail it is well known that any two-level syste
in the presence of a driving field has a Hamiltonian of t
form H5 1

2 \VTs, where \ is Planck’s constant,sT

5(s1 ,s2 ,s3) are the Pauli spin matrices, andVT

5(v1 ,v2 ,v3) is a time-varying vector of scalars with uni
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of angular velocity. Let the unitary matrix describing th
evolution under this Hamiltonian beU. Then the time de-
rivative of U is U̇5(1/i\)HU, and the quantityM
5UsU21, where s is any linear combination of thes j
~with time-constant coefficients!, has the form

M5S m3 m12 im2

m11 im2 2m3 D , ~1.2!

with m1, m2, andm3 real. It is well known that the vecto
mT5(m1 ,m2 ,m3) evolves in time such that its instantaneo
angular velocity about the origin isV(t), and hence that it
obeys the Bloch equations withG15G250. Furthermore,
suppose the system is initially at thermal equilibrium, w
~time-constant! Hamiltonian H05 1

2 \s. Then the density
matrix is r5(1/Z)exp(2H0 /kT) at temperatureT, with k
the Boltzmann constant, andZ the partition function. Hence
in the high-temperature regime,M is proportional to the ex-
cess over the scalar part of the density matrix, both at th
mal equilibrium, and subsequently, after the application o
driving field, when the Hamiltonian becomes time varyin
~The scalar partrs of r is defined byr5rs1r0, wherers is
a multiple of the unit matrix, andr0 has zero trace.! Thus the
vectorm represents this excess, or ‘‘polarization.’’

In nmr, for a nucleus with spin12 in a magnetic fieldH,
the quantityV defining the Hamiltonian equals2gH, where
g is the gyromagnetic constant of the nucleus. In pract
the object whose nuclei are being studied is placed i
strong, time-constant, spatially uniform field (0,0,H0), and a
magnetic field 2 cosvrf t „H1(t),H2(t),0… is applied in the
x-y plane.v rf is chosen to be equal, or very close, to t
transition frequencyv0 of the system under justH0, i.e.,
v052gH0 ~the sign indicates the sense of rotation ofm
about thez axis!, and in practicev rf will be radio frequency.

H1 and H2 are slowly varying functions describing th
envelope of the applied alternating field. Under the rotatin
wave approximation@7,8#, and in a frame rotating atv rf
about thez axis, it is well known that the Hamiltonian ha

f
:
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57 7217INVERSION OF THE BLOCH EQUATIONS WITHT2 . . .
the same form as before, but nowv1, v2, andv3 in V are
given byv11 iv25v52g(H11 iH 2) andv35v02v rf .

It has been shown@2# that the Bloch equations in th
rotating frame are appropriate in many cases to describe
evolution of a system of nuclei with spin greater than1

2 and
in the presence of spin-lattice and spin-spin coupling. T
latter two effects are described by relaxation ratesG1 andG2,
respectively. The quantitym then describes the bulk magn
tization density, only the transverse component of whi
i.e., m11 im2, can be detected in a receiver coil, which
placed around the sample.

Hence, most nmr experiments attempt to align the m
netization of all the nuclei that are of interest along a co
mon axis in thex-y plane, and to leave uninteresting spi
along thez axis. For example, the signal due to1H spins
from a dilute solute would be dominated by that from the1H
nuclei in an aqueous solvent. Since, in many cases, the r
nance offsetv3 of solvent spins differs from the solute spin
~because the nuclei are in different electronic environmen!,
rf pulses have been designed to ‘‘selectively excite’’ sp
according to their resonance offset.

When relaxation is neglected, the design of such ‘‘f
quency selective’’ pulses is a solved problem. The most
ficient approach is to reduce the Bloch equations to a 232
scattering problem—the Zakharov-Shabat~ZS! eigenvalue
problem@9,10#—and then further reduce this problem to t
calculation of soliton pulses, which in this context mea
pulses that return magnetization initially at (0,0,1) back
(0,0,1), irrespective of the resonance offset@11–13#.

Sometimes, it is more convenient to select spins acco
ing to their relaxation behavior—usually because the spin
be distinguished are not well separated by their resona
offsets. A typical application is in magnetic resonance im
ing, where the signal from1H in fat is often inconvenient,
whereas the signal from water is desired. The general me
is to null the magnetization, in some way, of the spins no
interest, i.e., make their final magnetizationmT5(0,0,0). If
the method is to work, the other spins will have a non-n
magnetization at this instant—often the method is desig
so these spins all have magnetization along thez axis. These
can then be detected with a short, intense, constant pha
pulse of total angle* uvu dt5p/2 to flip these spins into the
x-y plane.@Such a pulse is called a hardp/2 pulse. Assum-
ing the rf field is applied along thex axis, it is ideally rep-
resented byw1(t)5(p/2)d(t), whered(t) is the Dirac delta
function.#

Existing schemes of spin selection via relaxation@14–19#
~and also of spin contrast@20,21#! work by having short rf
pulses, where relaxation is neglected, and separate perio
free-precession, i.e., where no rf is applied and the sp
evolve only due to the field along thez axis, and due to
relaxation.

An example of aT1-selective method is the use of ‘‘in
version nulling,’’ i.e., the water eliminated Fourier transfor
~WEFT! and the driven equilibrium Fourier transform
~DEFT! techniques@14–17#. In the simplest version@14#, a
hardp pulse is applied, causing all magnetization, assum
to be initially at (0,0,1), to be rotated to (0,0,21). It then
starts relaxing byT1 relaxation towards the positivez axis.
Suppose it is left to free precess for a timet. For a spin with
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relaxation rateG1, the Bloch equations can be easily solv
with these conditions to find the evolution ofm3. In particu-
lar, at t5(1/G1)ln2, the magnetization will be (0,0,0), i.e
the magnetization will be nulled. Spins with differentT1
relaxation rates will not be nulled at that moment, and he
can be detected.

Note that this method also allows the measurement ofT1
for a spin species@22#. The period of free precessiont fol-
lowing thep hard pulse is varied. After each such period
hardp/2 pulse is applied to flip any magnetization from th
z axis to thex-y plane, and the magnitude of the signal
measured. Since the variation of the signal witht is due to
the value ofT1, its value can be calculated. This is called
inversion recovery sequence.

This decoupling of evolution to periods of just rf puls
and to just free precession is done because these regime
more completely understood than the general case of b
time-varying rf pulse and relaxation together causing
evolution. Since it may not always be valid to neglect rela
ation during an rf pulse, and since the selectivity of existi
relaxation based schemes is not very flexible, it is usefu
consider the design of rf pulses that work simultaneou
with relaxation to obtain selectivity.

In this paper,T1 relaxation will be neglected, excep
qualitatively and for a special case, see Secs. IV B and IV
SinceT1@T2 for many systems, this is often a valid assum
tion. Also, v3 is not a parameter used to select particu
spins, but is considered part of the driving field. That is,
spins see the samev3 ~which can be allowed to be time
varying!.

It is then easily shown that, by suitably choosing the r
erence frame,v3(t) can be made identically zero~see Ap-
pendix A!. Its effect can be ‘‘absorbed’’ as a time-varyin
extra phase of the rf pulse. Henceforth, it should be assu
that this choice of reference frames has been made.

The soliton pulses mentioned above also occur in the c
text of designingT2-selective pulses. In general, a solito
pulse means one whose associated scattering matrix isJ di-
agonal ~these terms are defined later!. Here, however, it
should be taken as meaning a pulse that, given an in
magnetizationmT5(0,0,1), results in a final magnetizatio
mT5„0,0,m3(G2)…, where

m35)
j 51

m
G22 izj

!

G22 izj
, ~1.3!

for a spin species withT2 relaxation rateG2. Here, thezj are
in the upper half complex plane, and! means the complex
conjugate. Hence, for a suitable choice ofzj , m can be made
zero for particular values ofG2, and thus a soliton pulse ca
be used to null the magnetization of spin species with th
values~there will be a zero ofm3 for eachzj on the positive
imaginary axis!.

This paper is mostly concerned with the calculation
soliton pulses. For the special case whenv(t) is real, i.e.,
v2(t)50, it shows that the Bloch equations can be reduc
to the ZS problem, and hence existing, well-known metho
may be used to calculateT2-selective ~not just soliton!
pulses.
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7218 57DAVID E. ROURKE AND SETH D. BUSH
In general, though, the system must be treated as a th
order scattering problem, withG2 as the scattering param
eter, andv(t) as the ‘‘potential.’’

A powerful technique, the dressing method@23,24#, may
be used to construct a ladder of soliton pulses. In orde
apply this method, which is applicable to generaln3n scat-
tering problems, constraints have to be found on the par
eters, or ‘‘dressing data,’’ used in soliton pulse constructi
It is also necessary to connect the dressing data to theT2
selectivity of the pulses~since it is the latter that will be
specified!. Finally, an efficient method of calculating thes
pulses, using ‘‘nonlinear superposition formulas,’’ will b
given.

The j th step in the ladder of soliton pulses is made giv
dressing data$zj ,z̄j ,v j ,w̃j%, wherezj and z̄j are complex
numbers, andv j andw̃j are vectors. Appendix B proves tha
all the zj , and z̄j , may be taken to be in the upper, an
lower, half complex planes, respectively. Appendix C giv
the connection between the calculation of pulses via the
duction to the ZS problem, to the calculation of the sa
~necessarily real! pulses via the dressing method.

II. REAL PULSE

If the rf pulsev(t) is real, system~1.1! decouples, and
can be reduced to a 232 system. Forv2(t)50 andG150,
Eq. ~1.1! can be rewritten:

]

]tS m1

m2

m3

D 5S 2G2 0 0

0 2G2 2v1

0 v1 0
D S m1

m2

m3

D . ~2.1!

Hence, assuming

m→S 0

0

1
D , ~2.2!

as t→2`, thenm150 for all t. Further,

]

]tFeG2t/2S m2

m3
D G5S 2

G2

2
2v1

v1
G2

2

D FeG2t/2S m2

m3
D G .

~2.3!

But this is a special case of the Zakharov-Shabat eigenv
problem@9#,

]v
]t

5S 2 i z 2q!~ t !

q~ t ! i z D v, ~2.4!

identifying z52 iG2/2 andq(t)5v1(t)5q!(t).
The ZS problem has been extensively studied both a

forward problem, where the behavior ofv is determined,
given the parameterz and functionq(t), and as an inverse
problem. Here, the behavior ofv is specified by giving the
d-

to

-
.

n

s
e-
e

ue

a

‘‘scattering data’’ of the system. For each such set of sc
tering data, a ‘‘potential’’q(t) may be uniquely determined
@9,10,25–27#.

Suppose the ZS system~2.4! has scattering coefficient
a(z),b(z),ā(z),b̄(z) for real z. It also has bound states
given in standard notation@10#, by data$z j ,bj ,z̄ j ,b̄ j%. For
example, thez j are the zeroes ofa(z) in the upper half
complex plane. Since, for system~2.3!, q is purely real, it
can be shown that@10,28# b̄(z)5b!(z!)5b(2z), ā(z)
5a!(z!)5a(2z), z̄ j5z j

! , and b̄ j5bj
! . Also, thez j occur

in pairs (z j ,2z j
!), or lie on the imaginary axis. For az j on

the imaginary axis,bj is pure real, else it is in a (bj ,bj
!) pair.

Thus, for realz and assumingq(t) is absolutely inte-
grable, if the ZS system has a 232 fundamental solution
with asymptotic behavior

V→S e2 i zt 0

0 ei ztD ast→2`, ~2.5a!

it will have behavior

V→S ae2 i zt
2b̄e2 i zt

bei zt āei zt D ast→`. ~2.5b!

Then the corresponding solution to Eq.~2.3!, with bound-
ary conditions~2.2!, can be shown to be

m2→2b̄~2 iG2/2!e2G2t, ~2.6a!

m3→ā~2 iG2/2!, ~2.6b!

ast→`. It is assumed here thatā(z) andb̄(z) are defined at
z52 iG2/2. For absolutely integrablev1(t), ā(z) can be
analytically continued from the real axis to the whole low
half complex plane, includingz52 iG2/2 @10#. In general,
b̄(z) exists for realz, and can be analytically continued to
strip surrounding the real axis, the width of the strip belo
the real axis depending on the rate at whichv1(t) decays to
zero ast→` @10#. b̄ also exists at the ‘‘bound states’’ of th
system in the lower half complex plane, i.e., at the zeroes
ā(z) in the lower half plane.

A useful class of pulses exists ifb̄(z) is zero throughout
its strip of analyticity. Thenā(z) has the form

ā~z!5)
j 51

m
z2z j

!

z2z j
, ~2.7!

for z real and in the lower half complex plane. This corr
sponds to a final magnetization response

m15m250, ~2.8a!

m35)
j 51

m
G222i z j

!

G222i z j
, ~2.8b!

and hence these pulses belong to the soliton class desc
in the Introduction. It is well known how to invert the ZS
problem forā(z) @anda(z)# zero for realz. Methods such as
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the Bäcklund transform@11,29,30#, or the dressing method o
Neugebauer@31# are particularly efficient.

III. THE GENERAL CASE

For a complex rf pulse, it is not possible to reduce syst
~1.1! to a linear system of lower degree. It is necessary
e

e
ith

-

g
th
o

treat the system as a third-order scattering system, and
more general techniques than for the ZS problem to find
pulses. As described in the Introduction, pulses in the sol
class will be calculated using the dressing method.

It is convenient for this method to change variables in E
~1.1! so that the Hamiltonian becomes traceless. Then, s
G150 andv3(t)50,
]

]tF e2G2t/3S m3

m

m!
D G5S 2G2/3 2 iv!/A2 iv/A2

2 iv/A2 2G2/3 0

iv!/A2 0 2G2/3
D F e2G2t/3S m3

m

m!
D G , ~3.1!
d

o de-

rm
he

.

-
uc-

ti-

ally
,
n, it
f
ce,
wherem5(1/A2)@m11 im2#, the factor 1/A2 being chosen
so that the matrix in Eq.~3.1! has a symmetry about th
leading diagonal.

Let F be the fundamental 333 matrix solution to Eq.
~3.1!. ThenF is the solution to the scattering system,

]F

]t
5@ i zJ1V~ t !#F~ t,z!, ~3.2a!

where z52 iG2 is the scattering parameter, or eigenvalu
Here, J is a time constant, traceless diagonal matrix w
elements down the diagonal in nonincreasing order,

J5S 2/3 0 0

0 21/3 0

0 0 21/3
D , ~3.2b!

and V, the ‘‘potential,’’ is a time varying, absolutely inte
grable, ‘‘J-off-diagonal’’ matrix @32#. Being J-off-diagonal
means that there exists a matrixW such thatV5@J,W#
5JW2WJ. Since

V5S 0 2 iv!/A2 iv/A2

2 iv/A2 0 0

iv!/A2 0 0
D , ~3.2c!

a possible choice ofW is

W5S 0 2 iv!/A2 iv/A2

iv/A2 0 0

2 iv!/A2 0 0
D . ~3.3!

It is important thatV is J-off-diagonal, since the dressin
method naturally constructs such potentials from
‘‘vacuum,’’ as described below@see especially Eq.~3.7!#.

A. The dressing method

The dressing method states that ifF0 is the solution to
the, in general,n3n scattering system

]F0

]t
5@ i zJ1V0~ t !#F0~ t,z!, ~3.4!
.

e

with given boundary conditions, then there exists aF1, re-
lated toF0 by

F15@11R/~z2z!#F0 , ~3.5!

and that has a similar evolution toF0, namely,

]F1

]t
5@ i zJ1V1~ t !#F1~ t,z!, ~3.6!

with boundary conditions determined below, and with

V12V05 i @R,J#. ~3.7!

Here,R(t) is ann3n matrix, to be determined. It is obtaine
in terms ofF0, z ~which is whereF1 becomes singular!, and
some other parameters. The set of parameters needed t
termineF1 given F0 will be called ‘‘dressing data.’’

Thus, given a known solution to an equation of the fo
Eq. ~3.4!, a ladder of new solutions can be built up. Since t
matrix dressing operatorR is known in terms of the known
solutionF0, both F1 andV1 may be explicitly determined
This process may then be repeated, with a new matrixR
determined in terms ofF1. Typically, the initial system is
the ‘‘vacuum,’’ whereV0(t)50, and henceF0(t,z) may be
taken as exp@izJt#. This ladder is then called a ‘‘soliton
ladder.’’ That these are solitons as defined in the Introd
tion is shown in Sec. III C.

It can be shown@24,33# that R satisfies

dR

dt
5L0~ z̄!R2RL0~z!1 iRJR, ~3.8a!

and

R25~z2 z̄!R. ~3.8b!

Here,L0(z)5 i zJ1V0, and the time dependence in quan
ties above is not shown explicitly unless needed.z̄ is another
parameter in the dressing method, and is most natur
taken asz̄5z! for the system~3.2!, as shown later. Further
z is assumed to be off the real axis. Given this assumptio
is shown in Appendix B thatz may be taken, without loss o
generality, to be in the upper half complex plane. Hen
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solutions in the soliton ladder may always be chosen to
analytic in the lower half complex plane.

This result is not surprising.J in Eq. ~3.2b! has only two
distinct elements on the diagonal. It is therefore reasona
to expect that the fundamental solutionF would share some
analytic properties with the solution to the 232 ZS problem.
One property of the latter is that the fundamental solut
may be chosen to be analytic in the lower half comp
plane.

Under the assumption thatz is off the real axis,z2 z̄Þ0,
and then Eq.~3.8b! implies that

R~ t !5~z2 z̄!T̂~ t !, ~3.9!

where T̂(t) is a projection matrix, i.e.,T̂25T̂. Thus, Eq.
~3.5! can be rewritten

F1~ t,z!5F11
z2 z̄

z2z
T̂~ t !GF0~ t,z! ~3.10a!

or, inversely,

F0~ t,z!5F12
z2 z̄

z2 z̄
T̂~ t !GF1~ t,z!. ~3.10b!

The change inV, i.e., V12V0 can be rewritten@Eq. ~3.7!#:

V12V05 i ~z2 z̄!@ T̂,J#. ~3.11!

Further, the image and kernel ofT̂ can be shown to have
the general form@23,24#

im T̂5F0~ z̄!v, ~3.12a!

kerT̂5F0~z!w, ~3.12b!

with v andw constant vector spaces. Hence, they are gi
asn3d andn3(n2d) matrices, whered is the dimension
of the image ofT̂, with each column of the matrix a linearl
independent vector in the respective space. Then, the ge
form of T̂ is

T̂5F0~ z̄!v@w̃TF0
21~z!F0~ z̄!v#21w̃TF0

21~z!.
~3.13!

Here, w̃ refers to the space orthogonal tow, i.e., it is an
n3d matrix such thatw̃Tw50. Note thatw̃ is not a uniquely
defined matrix. However, the value ofT̂ is independent of
the choice of the forms of bothw̃ and ofv.

However, for the 333 system considered here,d must
equal 1 or 2, ifT̂ is to be nontrivial. Ifd51, thenT̂ can be
written more simply. Since, ford51, w̃TF0

21(z)F0( z̄)v is a
number, it is convenient to define

T~ t !5F0~ t,z̄!PF0
21~ t,z!, ~3.14!

where

P5vw̃T ~3.15!
e

le

n
x

n

ral

is ~up to an arbitrary scale factor! an ‘‘undressed’’ constan
projection matrix with a one-dimensional image.

Then,

T̂5
F0~ z̄!vw̃TF0

21~z!

w̃TF0
21~z!F0~ z̄!v

~3.16a!

5T/tr~T!, ~3.16b!

where tr(T) denotes the trace ofT. Note that, here,w̃ is an
n-component vector that is uniquely defined, up to an ove
scale factor.

If T̂ is a two-dimensional projection, then 12T̂ is a one-
dimensional projection, with image and kernel equal to
kernel and image, respectively, ofT̂. Then,

12T̂5
F0~z!wṽTF0

21~ z̄!

ṽTF0
21~ z̄!F0~z!w

, ~3.17!

whereṽ is defined in the same way asw̃ was above, that is

ṽ is the space orthogonal tov, in this case it is a uniquely
defined vector~up to an overall constant multiplier!. Defin-
ing T̂8512T̂, and from Eq.~3.10a!,

F15F11
z2 z̄

z2z
T̂GF05F11

z2 z̄

z2z
~12T̂8!GF0

5
z2 z̄

z2zF11
z̄2z

z2 z̄
T̂8GF0 . ~3.18!

Hence, using a two-dimensionalT̂ with (z,z̄), in the dressing
data is equivalent to using a one-dimensionalT̂8 with ( z̄,z)
in its dressing data. Therefore, for system~3.2!, T̂ may al-
ways be taken to have the form of Eq.~3.16!, i.e., it may
always be taken to have a one-dimensional image.

Returning to the generaln3n system, it follows from
Eqs.~3.10! and ~3.12! that

F1~ z̄!v50, ~3.19a!

F1
21T

~z!w̃50. ~3.19b!

That is,F1 andF1
21T

become degenerate atz5 z̄ andz5z,

respectively, withv and w̃ giving the linear dependence o
the columns. Typically, the dressing method is used to cre
an ‘‘m soliton’’ Fm , as the final rung in the ladde
F0 ,F1 , . . . ,Fm . Each F j is determined fromF j 21 by
specifying dressing datasj5$zj ,z̄j ,v j ,w̃j%, i.e., by specify-
ing the extra degeneracy ofF j overF j 21. Assuming eachzj

is distinct from all otherzj andz̄j , this degeneracy cannot b
taken away. Hence,

Fm~ z̄j !v j50, ~3.20a!

Fm
21T

~zj !w̃j50 ~3.20b!

for j 51, . . . ,m. Therefore, the order in which thesj are
specified is not important. Actually, thesj can be split up
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into sj 15$zj ,w̃j% andsj 25$z̄j ,v j% and these can be paire
up in any order. The sameFm will result. This ability to
build up anm-soliton using dressing data in any order is t
basis of the nonlinear superposition formulas@33#.

B. Symmetries

For the system~3.2!, there are constraints on the form
the Hamiltonian. Define

Lm~ t,z!5 i zJ1Vm~ t !. ~3.21!

which corresponds to the evolution ofFm , the final soliton
constructed by the dressing method.Vm is the corresponding
potential.Lm has the following symmetries:

Lm~ t,z!52Lm
† ~ t,z!!, ~3.22a!

Lm~ t,z!52BLm
T ~ t,2z!B21, ~3.22b!

where † denotes the Hermitian transpose, and

B5S 1 0 0

0 0 1

0 1 0
D . ~3.22c!

Of course,B5B21, here, but the constraints Eqs.~3.24! and
~3.25! below hold for general~time-constant, invertible! B.

Studying how such constraints affect the allowed dress
data is known as a reduction problem@24,34#. Note that only
the constraints uponLm will be considered, and not th
Hamiltonians of solitons lower down the ladder, since u
mately onlyFm andVm are of interest.

It is well known @34# that the symmetries~3.22! give rise
to automorphisms on the solution sets to system~3.2!. This
means that ifFm has asymptotic behavior,

Fm~ t,z!→ei zJtAm~z! ~3.23!

ast→2`, then Eqs.~3.22a! and~3.22b! imply, respectively,

Fm~ t,z!5Fm
21†

~ t,z!!Am
† ~z!!Am~z!, ~3.24a!

Fm~ t,z!5BFm
21T

~ t,2z!Am
T ~2z!B21Am~z!.

~3.24b!

Assume thatFm is normalized so thatAm
† (z!)Am(z)51

and Am
T (2z)B21Am(z)5B21. This can always be done

Then, by considering Eqs.~3.20!, it follows that the above
constraints onFm imply ~modulo reordering, and scaling o
the vectors by arbitrary constants!, for j 51, . . . ,m,
g

-

zj5 z̄j
! , ~3.25a!

w̃j5v j
! , ~3.25b!

and either

zj is purely imaginary andw̃j5B21v j , ~3.25c!

or

zj occurs in a~zj ,zk52zj
!! pair,

with vk5Bw̃j and w̃k5B21v j . ~3.25d!

Further, by considering how imposing the above con
tions ~3.25! gives rise to symmetries on the dressed proj
tion operatorsT̂j used to determineF j from F j 21, it can be
shown that these conditions are sufficient to give the des
symmetries onLm . Notice, though, that constraint~3.25d!
allows intermediateF j to exist that do not have the sam
symmetries asFm @Eqs.~3.24!#.

Finally, the form of Eqs.~3.2! implies that eachv j ~and
hencew̃j ) may be normalized so that its first component
one, i.e.,v j has the formv j

T5(1,aj 2 ,aj 3). Such a normaliza-
tion would only be impossible if the first component ofv j ,
and hencew̃j , were zero. Then the undressed projection m
trix Pj defined by Eq.~3.15! would be nonzero only in its
lower 232 block. Thus the dressed projection matrixT̂j
would also have this structure, and hence would beJ diago-
nal, i.e., by definition,@ T̂j ,J#50. Thus, the subsequent ap
plication of the dressing method would not change the
tential. Therefore,v j must have a nonzero first component
the dressing method is to have a nontrivial effect, and so
above normalization is valid.

C. The asymptotic behavior of the system

In order to determine the effect of them-soliton potential
Vm(t) calculated by the dressing method, the behavior
Fm(t,z) as t→6` must be determined.

Consider an intermediate soliton solution of system~3.2!,
F j 21(t,z). It will, in general, have asymptotic forms

F j 21~ t,z!→S ei zJtAj 21~z! as t→2`

ei zJtSj 21~z!Aj 21~z! as t→`
~3.26!

for real z, whereSj 21(z) is the ‘‘scattering matrix’’ of the
system.

The dressed projection matrixT̂j (t) used to determine
F j (t,z) will then have asymptotic forms~which are indepen-
dent of t),
T̂j~ t !→S @12Aj 21~ z̄j !PjAj 21
21 ~zj !12#/tr@•••# as t→2`

@11Sj 21~ z̄j !Aj 21~ z̄j !PjAj 21
21 ~zj !Sj 21

21 ~zj !11#/tr@•••# ast→`,
~3.27!
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where Pj5v j w̃ j
T , and $zj ,z̄j ,v j ,w̃j% are the dressing dat

used to constructF j . The notationX/tr@•••# stands forX
divided by its trace. The matrices11 and12 are

115S 1 0 0

0 0 0

0 0 0
D , ~3.28a!

125S 0 0 0

0 1 0

0 0 1
D . ~3.28b!

The above results rely on the fact thatJ in Eq. ~3.2! has its
elements in nonincreasing order, and thatzj is in the upper
half complex plane, withz̄j5zj

! . The particular structure o
11 and12 follows from J having a unique highest elemen
and two equal lowest elements.

The asymptotic forms~3.27! can be written as

T̂j~ t !→5 F0

T̂j
2G as t→2`

F T̂j
1

0
G as t→`,

~3.29!

where 0 signifies a zero matrix of appropriate size,T̂j
2 is a

232 matrix, andT̂j
1 is a number. Clearly,T̂j

151, as it must
have a trace of one. Here, and later, a matrix in square br
ets signifies that it is built up from smaller matrices or ve
tors, as well as numbers, in an obvious way.

The asymptotic forms ofF j (t,z) can then be shown to b

F j~ t,z!→H ei zJtAj~z! ast→2`

ei zJtSj~z!Aj~z! ast→`,
~3.30!

where

Aj~z!5F 1

11
zj2 z̄j

z2zj
T̂j

2GAj 21~z!, ~3.31a!

Sj~z!5F 11
zj2 z̄j

z2zj
T̂j

1

1
GSj 21~z!F 1

12
zj2 z̄j

z2 z̄j

T̂ j
2G ,

~3.31b!

where the 1’s are unit matrices of appropriate size.
Given a ‘‘vacuum’’ solutionF05exp@izJt#, then A0(z)

5S0(z)51. The final Am(z) and Sm(z) can then be ob-
tained via Eqs.~3.31!. Note that all theSj will be J diagonal.

Equation~3.31b! gives the connection between the calc
lation of the soliton potential,Vm , and the calculation of
T2-selective pulses. Them-soliton solutionFm is a funda-
mental solution to the traceless equation of motion of
magnetization, Eq.~3.1!. Now assume that the initial magne
tization ism351, m50 for all G2, i.e.,
k-
-

-

e

e2G2t/3S m3

m

m!
D→S e2G2t/3

0

0
D ~3.32!

as t→2`.
However,Fm(t,z)→exp@izJt#Am(z) as t→2`, and so

Fm~ t,2 iG2!Am
21~2 iG2!ê1→S e2G2t/3

0

0
D ~3.33!

as t→2`, whereê1
T5(1,0,0).

Hence, the magnetization response is related toFm ,

S m3

m

m!
D 5e22G2t/3Fm~ t,2 iG2!Am

21~2 iG2!ê1 .

~3.34!

Therefore, after the rf pulsev(t) corresponding to the soli
ton potentialVm(t) via Eq. ~3.2c!, is applied,

S m3

m

m!
D→e22G2t/3eG2JtSm~2 iG2!ê1

→S 1 0 0

0 e2G2t 0

0 0 e2G2t
D Sm~2 iG2!ê1 , ~3.35!

as t→`. Just as in Sec. II, the elements ofSm(z) are, in
general, not defined over the whole complexz plane. LetSm

haveSm
( i , j ) as the element in rowi and columnj . Then the

elementSm
(1,1) is defined for realz, and may be analytically

continued to the entire lower half complex plane.Sm
(2,1) and

Sm
(3,1) are defined for realz and may be analytically contin

ued to a strip surrounding the real axis.
For realz, Eq. ~3.31b! allows the calculation ofSm(z).

From Eq. ~3.35!, only its first column is of interest. Sinc
T̂j

151, it gives

Sm~z!ê15S )
j 51

m
z2 z̄j

z2zj

0

0

D , ~3.36!

and hence

S m3

m

m!
D→S )

j 51

m
G22 i z̄ j

G22 izj

0

0

D ~3.37!

as t→`. This expression is correct even if2 iG2 is outside
the strip of analyticity referred to above, as then the tra
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verse magnetization will still decay to zero ast→`, and the
expression form3 is correct for allG2.

Therefore, after the application of the rf pulse, the ma
netization will once again lie on thez axis. Them3 response
must take the form

m3~G2!5)
j 51

m
G22 izj

!

G22 izj
, ~3.38!

with zj in the upper half complex plane. Hence, the dress
method indeed creates soliton pulses as defined in the In
duction. It also demonstrates that the general definition
soliton pulse@one whose scattering matrix isJ diagonal#
corresponds to the specific definition used for this sys
@one whose final magnetization response has the form of
~3.37!#.

D. Computing the soliton potential

Given the set of dressing datasj5$zj ,z̄j ,v j ,w̃j% for j
51, . . . ,m, the most straightforward way to numerically ca
culate the soliton potentialVm(t) is with nonlinear superpo
sition formulas. This method obviates the need to determ
any F j , for j .0. Only theT̂j are needed, and they can b
easily determined from previously calculatedT̂j .

Nonlinear superposition formulas are well known for t
ZS problem@29# and for higher-order systems@33#. The for-
mulas given below are specific to systems where all theT̂j
have one-dimensional images. However, they are comp
tionally advantageous, as no matrix inverses need be ca
lated, unlike those in Ref.@33#.

Consider a fundamental solutionF to system~3.2!. Let
F12 be the solution after the addition of dressing datas1 and
s2. F12 can be obtained in two ways, represented as

~3.39!

Hence,F12 is created via intermediate solutionsF1 or F2,
corresponding to adding dressing data in the orders1 ,s2 or
s2 ,s1, respectively.

Given the general form of theT̂ projections@Eq. ~3.16!#,
it is straightforward to show thatT̂12, the projection needed
to go fromF1 to F12 is

T̂125H F11
z12 z̄1

z̄22z1

T̂1G T̂2F12
z12 z̄1

z22 z̄1

T̂1G J Y tr@•••#.

~3.40a!

Similarly,
-

g
o-
f

m
q.

e

a-
u-

T̂215H F11
z22 z̄2

z̄12z2

T̂2G T̂1F12
z22 z̄2

z12 z̄2

T̂2G J Y tr@•••#.

~3.40b!

As previously,X/tr@•••# denotesX divided by its trace.
Consider now the problem of building up them-soliton

potential Vm from the vacuum. This can be done by co
structing a lattice whose base is the vacuum. For exam
for m53, the lattice would look like

~3.41!

Here, each element in the first column represents
vacuum solution,F05exp@izJt# at a given timet. The sec-
ond column represents solutions where a single soliton
been added vias1, s2, or s3.

The T̂ projection matrices needed to go from theF0’s to
the second column can be easily obtained, given the dres
data sj , j 51, . . . ,m, and Eq.~3.16!. Then the projection
matrices to get to the 2-soliton solutions in the third colum
may be determined from the nonlinear superposition form
las, Eqs.~3.40!. This is repeated until the end of the lattic
has been reached. Finally, them-soliton potentialVm(t) may
be obtained from

Vm~ t !5 i (
j 51

m

~zj2 z̄j !@ T̂12••• j ,J#, ~3.42!

where T̂12••• j is the projection matrix needed to go from
F12•••( j 21) to F12••• j along the top edge of the lattice. Not
thatVm is expressed in terms only of theT̂ matrices, and thus
the soliton solutionsF in the lattice never need to be dete
mined.
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IV. EXAMPLES

A. One-soliton potential

The simplest nontrivial real soliton pulse, as calculated
Sec. II, would have, with scattering data$z1 ,z̄1 ,b1 ,b̄1%, the
magnetization response@Eqs.~2.8!#

m50, ~4.1a!

m35
G22h

G21h
, ~4.1b!

wherez15 ih/2 andhPR1. This pulse could therefore b
used to null the magnetization of spins withG25h. The
general form of the one-soliton potential is well know
@10,27#, and hence the real rf pulse giving rise to the abo
response is

v1~ t !5
b1

ub1u
h sech@ht2 lnub1u#, ~4.2!

whereb1 is real. The requirements thatz1 is imaginary and
b1 is real follow from the symmetry constraints on the sc
tering data given in Sec. II.

The general form of a one-soliton potential calculat
with the dressing method with dressing data$z,z̄,v,w% is

V5S 0 v12 v13

v21 0 0

v31 0 0
D , ~4.3a!

where, for example,

v21~ t !52
ha2e2 ilt

Aua2u21ua3u2
sech@ht2 lnAua2u21ua3u2#.

~4.3b!

Here, z5l1 ih, with lPR and hPR`, and vT

5(1,a2 ,a3).
The above expression assumed the constraints~3.25a! and

~3.25b!, but not~3.25c! or ~3.25d!. To get a physically real-
n

e

-

izable one-soliton rf pulse, constraint~3.25c! must be satis-
fied, and hencez5 ih anda35a2

!. The associated magnet
zation response@Eq. ~3.38!# would be

m35
G22h

G21h
. ~4.4!

The general form of the rf pulse,v(t), is then

v~ t !52 iheif2sech@ht2 ln~A2ua2u!#, ~4.5!

wheref2 is defined bya25ua2ueif2.
From Appendix C,v(t) in Eq. ~4.5! should correspond

with that in Eq. ~4.2! when a25 i b̄1 /A2. Sinceb̄15b1
! in

general, and hereb1 is real, this prediction is easily verified
The rf pulse calculated by the dressing method, Eq.~4.5!,

is just a trivial generalization of the rf pulse calculated by t
reduction to the ZS problem, Eq.~4.2!, since it just has an
extra constant phase. It is necessary to calculate higher-o
soliton pulses to get a nontrivial difference.

B. One-soliton potential with both T1 and T2 relaxation

Although this paper describes the calculation of puls
whose response is a function ofG2, andG1 is assumed to be
zero, in many cases this assumption is not valid. It is the
fore useful to see the effect ofT1 relaxation on the one-
soliton pulse of Sec. IV A. This pulse can be taken, witho
loss of generality, to be

v~ t !5sech~ t !. ~4.6!

System~1.1!, with v350, can be solved for this pulse
For example, the method in Ref.@35#, whereG15g andG2
5 1

2 g, can be generalized. Given the initial condition

m~ t !→S 0

0

1
D , ~4.7!

as t→2`, the magnetization at timet will have the form
m~ t !5
1

~2G21!~2G11!S 0

2G1

G211
@ tanh~ t !12G# f ~ t !2sech~ t !@112G22g~ t !#

2
2G1

G211
sech~ t ! f ~ t !2@ tanh~ t !22G#@112G22g~ t !#

D , ~4.8!
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whereG5 1
2 (G22G1), and

f ~ t !52F1~1,@G211#/2;@G213#/2;2e2t!et,

g~ t !52F1~1,G1/2;11G1/2;2e2t!, ~4.9!

with 2F1 the hypergeometric function@36#.
Hence, the asymptotic form ofm(t) can be shown to be

for G2,1 andG1,G211,

m~ t !→S 0

pG1e2G2t

~2G121!sinFp2 ~G211!G
12

pG1e2G1t

~G22G111!sinS p

2
G1D

D ~4.10!

as t→`. Note that in the limitG1→0, this becomesm(t)T

→„0,0,(G221)/(G211)…, as expected from the previous e
ample.

A useful situation to consider is a range of spin spec
with different T2 values, and with each spin species havi
G15G2 /a, wherea.1 is a constant. Imagine applying th
sech pulse, and examining the magnetization response
fixed time T, assumed large enough so thatm(t) is in the
regime of Eq.~4.10!.

Then, asG2→0,

m~T!→S 0

0

21
D . ~4.11!

Equation~4.10! is not valid forG2>1. However, it is easily
seen that

m~T!→S 0

0

1
D , ~4.12!

asG2→`.
There will therefore always be a value ofG2, sayg2, for

which m3(T)50, obtained by solvingm350 in Eq. ~4.10!.
This always has a unique solution fora.1 andG2,1. Asa
decreases, so doesg2.

In general,T2-selective pulses with oddm in Eq. ~3.38!
can still be used in the presence ofT1 relaxation, provided
the corresponding shift in the value ofg2 is taken into ac-
count. It should also be noted thatm2 ~andm1, for complex
rf pulses! will now be nonzero after the application of th
pulse.

C. A higher-order soliton pulse

A higher-order soliton pulse was calculated numerica
using the dressing data
s,

t a

z15 i , z̄15z1
! , v15S 1

2
i

A2

i

A2

D , w̃15v1
! ,

z25~A31 i !/2, z̄25z2
! , v25S 1

i

A2

2
i

A2

D , w̃25v2
! ,

z35~2A31 i !/2, z̄35z3
! , v35S 1

i

A2

2
i

A2

D , w̃35v3
! .

~4.13!

Note that the above data satisfy the constraints of E
~3.25!. These data were chosen somewhat arbitrarily, to d
onstrate dressing data with onezj on the imaginary axis, and
two zj as a (zj ,2zj

!) pair.
Such dressing data would lead to a magnetization

sponse

m3~G2!5
~G221!@~G2!22G211#

~G211!@~G2!21G211#
. ~4.14!

Choosing the unit of time as 1 ms, this would select out sp
with T251 ms. The corresponding rf pulse is shown in F
1. Note that this pulse is real, and could have also b
calculated by the method of Sec. II.

FIG. 1. Three-soliton real rf pulse,v1(t), with dressing data
from Eq. ~ 4.13!.
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For soliton rf pulses, the finalm3 response is a function
only of thezj in the dressing data, and not of thev j making
up the undressed projection matrices. Further, the total ‘
ergy’’ of the pulse,

E5E
2`

`

uw~ t !u2 dt, ~4.15!

is dependent only on thezj . The effect of thev j becomes
apparent from the expression for the one-soliton poten
@Eqs. ~4.3!#. An m-soliton can be considered asm one-
solitons superposed in a nonlinear fashion. However, if e
soliton is widely separated from every other one, i.e.,
values ofv j

†v j are all well separated, the individual soliton
will be independent, and hence temporally well resolved
the combinedm-soliton.

If the values ofv j
†v j are not well separated, it is some

times useful to still think of them-soliton as composed o
individual one-solitons. For example, consider two solito
superposed, withv j and v j 11 in their dressing data. Ifv j
5v j 11, the maximum amplitude of the resultant rf pulse w
often be larger than it would be if the components ofv j 11
have different phases than those inv j .

Consider a set of dressing data similar to that above,
with the phases ofv2 andv3 changed,

z15 i , z̄15z1
! , v15S 1

2
i

A2

i

A2

D , w̃15v1
! ,

z25~A31 i !/2, z̄25z2
! , v25S 1

21

A2

2
i

A2

D , w̃25v2
! ,

z35~2A31 i !/2, z̄35z3
! , v35S 1

i

A2

2
1

A2

D , w̃35v3
! .

~4.16!

The corresponding, complex, rf pulse is shown in Fig.
This figure also showsuv(t)u. It can be seen that simpl
changing the phase of the middle components ofv2 andv3
resulted in an approximately 20% decrease in maximum
plitude, without changing the pulse duration.

The pulse of Fig. 1 was tested experimentally on a se
of copper sulphate solutions with varying concentratio
and hence varyingT2 times. In fact, the pulse was com
pressed to 14.5 ms, instead of 20 ms, and its amplitude
multiplied by a factor 20/14.5. The predicted response is t
-

al

h
e

n

s

ut

.

-

s
,

as
n

m3~G2!5
~G2 /G021!@~G2 /G0!22G2 /G011#

~G2 /G011!@~G2 /G0!21G2 /G011#
, ~4.17!

whereG0520/14.5 ms21. This response is plotted again
log10G2 as the dashed line in Fig. 3.

For each concentration, theT2 was determined by a spin
echo sequence@37#, and the T1 was determined by an
inversion-recovery method@22#, as described in the Intro
duction.

Given a sample, the rf amplifier was calibrated by app
ing hard pulses of varying strengths and measuring the si
intensities. Thus, ap hard pulse would correspond to th
first zero of the signal as a function of pulse strength. T
then enabled theT2-selective pulse to be played out at th
correct amplitude. Following the pulse, a hardp/2 pulse was
used to flip anyz magnetization into thex-y plane, giving a
measure of them3 component of magnetization following
the selective pulse.

FIG. 2. Three-soliton complex rf pulse, with dressing data fro
Eq. ~4.16!. The real and imaginary parts of the rf pulse,v1(t) and
v2(t), are shown together with the absolute value of the pu
uv(t)u. The functions describing the pulse are in units of rad/ms

FIG. 3. Dashed line: predictedmz response to the pulse of Fig
1, with G151/T150, as a function of log10G2. Solid line: predicted
response withG15

1
3 G2. Dots: experimental results.G2 has units

ms21.
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It was found that theT1 for these samples was not neg
gible, and was approximatelyG15 1

3 G2 for all the samples.
The solid line in Fig. 3 shows the response for the pulse
Fig. 1, but withG15 1

3 G2, as calculated by numerically inte
grating Eqs.~1.1!, with v350. This curve compares ver
well with the experimental results, shown as dots.

This pulse givesm350 at G2'0.22 ms21 when there is
T1 relaxation as described above. The maximum value ofm2
over all values ofG2 was found numerically to be approx
mately 0.038, when determined at the end of the pu
Hence, similarly to the one-soliton pulse in Sec. IV B, th
pulse would be suitable as aT2-selective pulse for this sys
tem.

V. CONCLUSION

The Bloch equations are usually inverted in order to
sign driving fields to produce a given final response a
function of resonance offset, neglecting relaxation. This
per describes a method of exploitingT2 relaxation in order to
null the magnetization of spins with particular relaxati
rates.

The inclusion of relaxation with the rf pulse in the an
lytic study of the Bloch equations is not new@35,38–41#. For
the purpose of inversion of the equations, it seems of li
practical value to obtain closed-form expressions of the
sponse, e.g., as quadratures or series expansions. Rathe
useful to express the problem as a scattering problem,
use inverse scattering techniques, such as the dres
method, to perform the inversion.

It is interesting to note that Manakov@42# showed that the
pair of coupled nonlinear Schro¨dinger equations describin
the evolution of a sum of left and right handed polariz
electromagnetic waves through a nonlinear medium can
studied using the inverse scattering method, with associ
eigenvalue problem a generalization of Eq.~3.1!. The poten-
tials q1 andq2 used in Manakov reduce to the system he
when

q15q2
!52 iv!/A2. ~5.1!

Hence, the properties of the scattering system descr
there, namely the analyticity and unitarity of the scatter
matrix form a subset of the properties derived here in Se
III B and III C. The expression for the one-soliton pulse
Manakov is equivalent to that here, Eq.~4.3b!. The ability to
reduce the third order system Eq.~3.1! to the ZS problem,
for a real pulse, is paralleled by a similar ability in Manak
for the case of a single polarization.

However, the purposes of Manakov’s and this paper
very different. The former was mainly interested in t
asymptotic behavior, ast→`, of a group of colliding one-
solitons~our ‘‘time’’ corresponds to ‘‘space’’ in that paper!.
We are more concerned with the practical application to n
~and other systems obeying the Bloch equations!. Hence, we
have constructed an explicit and efficient solution to the
genvalue problem, including a determination of the nec
sary and sufficient set of dressing data needed for its s
tion, and the relationship of the dressing data to
magnetization response as a function of relaxation rateG2.
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The pulses calculated here by the dressing method be
to the ‘‘soliton’’ class of pulses. Such pulses can be used
return all spins that were initially aligned along the ma
magnetic field~the z axis! back to thez axis, but with the
magnitude of the magnetization dependent on the spin’sT2.
This magnitude can be made zero for particularT2 values,
and hence this is a way of obtainingT2-selective pulses.

It has been demonstrated experimentally that these pu
work as predicted. One application of such pulses is the
lection of a spectral line that is hidden by another at the sa
resonance offset. An application in imaging would be t
nulling of magnetization of spins that are not of interest, e
fat or water. These are normally well distinguished fro
other spins by theirT2.

The T2-selective pulses designed here rely onT1 being
much longer thanT2. If T1 is not negligible, these pulses wi
still work, providedT1 is taken into account. Currently, thi
would need to be done numerically for all such pulses, ot
than the one-soliton pulse of Examples IV A and IV B.

Future work will include the extension of the 333 in-
verse scattering method described here to a broader cla
pulses than soliton pulses. This should enable the desig
pulses with more flexible responses than that of Eq.~3.38!,
such as sharper ‘‘notch-filter’’ responses.
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APPENDIX A: ABSORBING THE DETUNING, v3„t…,
INTO THE RF PULSE

The Bloch equations, Eqs.~1.1!, can be written as

]

]tS m3

m

m!
D 5S 2G1 2 iv!/A2 iv/A2

2 iv/A2 iv32G2 0

iv!/A2 0 2 iv32G2

D S m3

m

m!
D

1S G1

0

0
D , ~A1!

where the transverse magnetizationm is defined by m
51/A2@m11 im2#, the factor 1/A2 being chosen to be con
sistent with Eq.~3.1! in Sec. III. As defined in the Introduc
tion, v5v11 iv2.

Then definem8(t) andf(t) by

m8~ t !5m~ t !expF i E
t

t1
v3~ t8! dt8G5m~ t !eif~ t !, ~A2!

wheret1 is the time at which the driving field ends.
Equation~A1! becomes
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]

]tS m3

m8

m8!
D 5S 2G1 2 iv8!/A2 iv8/A2

2 iv8/A2 2G2 0

iv8!/A2 0 2G2

D S m3

m8

m8!
D

1S G1

0

0
D , ~A3!

wherev8(t)5v(t)eif(t).
Hence, the evolution ofm under arbitraryv3(t) is equiva-

lent to evolution in the frame defined by Eq.~A2! with v3
50.

Consider the converse case. Let evolution under th
pulse v(t), with detuning v3(t), be denoted by
$v(t),v3(t)%. Given initial transverse and longitudinal ma
netization $m(t0),m3(t0)%, let this evolution lead to fina
transverse and longitudinal magnetization$m(t1),m3(t1)%.
Then by going into them8 frame, an initial magnetization
given by $m(t0)eif(t0),m3(t0)%, with f(t) defined in Eq.
~A2!, will also evolve under $v(t)eif(t),0% to
$m(t1),m3(t1)%.

Hence, all final magnetizations reachable by an rf pul
detuning pair,$v(t),v3(t)%, are also reachable with no de
tuning if eithereif(t0)51 or if m(t0)50. In almost all cases
of interest, the initial magnetization ismT5(0,0,1), so the
latter condition is satisfied. In general, it would be necess
to apply a detuning ‘‘blip,’’ v3(t)5f(t0)d(t2t0), where
d(t) is the Dirac delta function, before the evolution und
$v(t)eif(t),0%, for this to be equivalent to evolution unde
$v(t),v3(t)%. Since this blip acts to rotate the initial magn
tization about thez axis byf(t0), this could be replaced by
three rf pulse blips, i.e., hard pulses, of~in order! Ry(p/2),
Rx„f(t0)…, and Ry(2p/2). @Here, for example,Ry(p/2)
means an rf pulse blip producing a rotation of anglep/2
about they axis, and could be obtained from an rf pulse
the formv(t)5 i (p/2)d(t).# This follows from the identity

Rn8~u!5Rm~a!Rn~u!Rm~2a!, ~A4!

where, for example,Rm(a) represents a rotation ofa about
a unit axism, and n8 is obtained fromn by the rotation
Rm(a), i.e.,

n85Rm~a!n. ~A5!

Hence, any evolution under a nonzero detuning can
replaced by evolution under zero detuning, possibly with i
tial preparation of the spin system with rf pulse blips~but
these are not necessary when the initial magnetization
along thez axis!.

APPENDIX B: SWAPPING z↔ z̄ AND ‘‘UNDOING’’
THE SWAP

The soliton ladder of solutions to Eq.~3.2! is composed of
solutions F j (t,z), j 50,1, . . . , and potentials Vj (t), j
50,1, . . . ,with F05exp@izJt# andV0(t)50. EachF j , and
henceVj , is constructed fromF j 21 with the dressing data
sj5$zj ,z̄j ,v j ,w̃j%.

For this system, it will be shown that any pair (zj ,z̄j ) can
rf

-

ry

r

f

e
-

es

be swapped to the pair (z̄j ,zj ) without changing theVj , and
right-multiplying all theF j for j .0 by a time-constant ma
trix, G(z). To achieve this, all thev j andw̃j must be modi-
fied.

Sincez̄j5zj
! for this system, the above result means th

without loss of generality, all thezj may be taken to be in the
upper half complex plane.~It is assumed in this paper tha
the zj are all off the real axis.!

Suppose a pair (z,z̄) are to be swapped. Since the dres
ing method can use the dressing data in any order, it can
assumed without loss of generality that this pair correspo
to (z1 ,z̄1).

Let F1 be the solution according to dressing dataz1, z̄1,

v1, andw̃1. Then@Eqs.~3.10a! and ~3.16!#

F15F11
z12 z̄1

z2z1
T̂1GF0 , ~B1!

where

T̂15
F0~ z̄1!v1w̃1

TF0
21~z1!

w̃1
TF0

21~z1!F0~ z̄1!v1

. ~B2!

Similarly, let F18 be the solution obtained fromF0 with

dressing dataz̄1, z1, v18 , and w̃18 . Its construction will re-

quire the formation of a projection matrixT̂18 , defined as in
Eq. ~B2!, but using different dressing data.

Hence, defining

G~ t,z!5F1
21~ t,z!F18~ t,z!, ~B3!

then

G~ t,z!5F0
21F12

z12 z̄1

z2 z̄0

~ T̂11T̂18!1S z12 z̄1

z2 z̄1
D 2

T̂1T̂18GF0 .

~B4!

Hence, choosingT̂18 such that

T̂1T̂1850 ~B5a!

and

T̂11T̂18 is constant andJ diagonal ~B5b!

will result in G being a function ofz only, that is

G~z!512
z12 z̄1

z2 z̄1

~ T̂11T̂18!. ~B6!

By definition, choosingT̂11T̂18 as J diagonal means tha

@ T̂11T̂18 ,J#50. Then, sinceF05exp@izJt#,

F0
21@ T̂11T̂18#F05T̂11T̂18 , ~B7!

from which Eq.~B6! follows. It also means, from Eq.~3.11!,
that the potentialsV1(t) andV18(t), corresponding toF1 and
F18 , will be equal.
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For the system~3.2!, constraints~B5! can be solved to
give

v185l@ ê1w̃1
T2w̃1

Tê1#v1 , ~B8a!

w̃185m@ ê1v1
T2v1

Tê1#w̃1 , ~B8b!

whereê1
T5(1,0,0) andl andm are arbitrary scale factors.

Explicitly,

v185lS a2b21a3b3

2a2b1

2a3b1

D and w̃185mS a2b21a3b3

2a1b2

2a1b3

D , ~B9!

wherev1
T5(a1 ,a2 ,a3) andw̃1

T5(b1 ,b2 ,b3). Then, it can be
shown that

T̂11T̂185F1

P̂2
G , ~B10!

whereP̂2 is the projection matrix

P̂25
1

a2b21a3b3
S a2b2 a2b3

a3b2 a3b3
D . ~B11!

Hence@Eq. ~B6!#,

G~z!512
z12 z̄1

z2 z̄1
F1

P̂2
G . ~B12!

Now consider the addition of another soliton, to getF2

when starting atF1, andF28 when starting atF18 . The pro-

jection matrixT̂2 needed to get fromF1 to F2 is, given the
dressing dataz2, z̄2, v2, andw̃2,

T̂25
F1~ z̄2!v2w̃2

TF1
21~z2!

w̃2
TF1

21~z2!F1~ z̄2!v2

. ~B13!

The projection matrixT̂28 to get fromF18 to F28 is defined

similarly in terms ofz2, z̄2, v28 , andw̃28 .

The parametersv28 and w̃28 are to be chosen such thatT̂28

5T̂2. This will ensure thatF285F2G(z), and hence the cor
responding potentials calculated by the two routesV2 andV28
are the same. SinceF185F1G(z), this implies that, forj
52,

v j85G21~zj !v j , ~B14a!

w̃j85GT~ z̄j !w̃j . ~B14b!

The same argument can be made for all the subsequen
rametersv j8 and w̃j8 , and hence Eqs.~B14! must be true for
all j >2.

Finally, this procedure works if more than one (z,z̄) pair
are to be swapped. For each pair, it can be imagined tha
dressing data are reordered, so the pair to be swapped
the data for the first soliton calculated from the vacuum. T
pa-

he
in

e

above procedure is undertaken. The dressing data are a
reordered so that the next pair is in the first lot of dress
data, and so on.

APPENDIX C: CONNECTION BETWEEN REAL PULSE
AND GENERAL CASE

This Appendix gives the connection between the meth
of calculating real soliton pulses in Secs. II and III. That
given that such a pulse,v1(t), was determined in Sec. I
with scattering data$z j ,bj ,z̄ j ,b̄ j%, it shows what dressing
data $zj ,z̄j ,v j ,w̃j% are needed in Sec. III to calculate th
same pulse.

Since all thezj used in the dressing method were chos
in the upper half complex plane, the soliton solutionF cal-
culated by that method will be analytic in the lower ha
complex plane. It is then natural to consider a fundamen
solution to the ZS problem~2.4! of Sec. II that is also ana
lytic in the lower half complex plane.

It is well known @10# that the solutionsc̄(t,z) andf̄(t,z)
to the ZS problem with asymptotic behavior

c̄~ t,z!→S 1

0D e2 i zt as t→`, ~C1a!

f̄~ t,z!→S 0

21D ei zt as t→2`, ~C1b!

are analytic in the lower half complex plane. Hence defi
the 333 matrix-valued functionC as

C5F1

[ c̄ 2f̄]
G . ~C2!

This function satisfies

]C

]t
5S 0 0 0

0 2 i z 2v1~ t !

0 v1~ t ! i z
D C~ t,z!, ~C3!

whereq(t) in the ZS problem has been set equal to the r
function v1(t) describing the rf pulse.

Let F(t,z) be a fundamental solution to Eq.~3.1! in Sec.
III, built up by the dressing method. Consider

F̃~ t,z!5ECF~ t,z!C21, ~C4a!

where

E5S ei zt/3 0 0

0 e2 i zt/6 0

0 0 e2 i zt/6
D ~C4b!

and

C5S 0 1/A2 1/A2

0 2 i /A2 i /A2

1 0 0
D . ~C4c!
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Then, since the rf pulse is real,F̃ satisfies

]F̃~ t,2z!

]t
5S 0 0 0

0 2 i z 2v1~ t !

0 v1~ t ! i z
D F̃~ t,2z!, ~C5!

noting that this is the same evolution equation as satisfied
C(t,z).

Finally, it can be checked that bothC(t,z) and F̃(t,2z)
have the same asymptotic behavior asuzu→` in the lower
half complex plane. Thus, it can be concluded that

C~ t,z!5ECF~ t,2z!C21. ~C6!

Now, the scattering dataz̄ j and b̄ j are defined by@10#

f̄~ t,z̄ j !5b̄ j c̄~ t,z̄ j !. ~C7!

Hence,

C~ t,z̄ j !S 0

b̄ j

1
D 50. ~C8!
V
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m

R

.

y

But the corresponding dressing data are defined by@Eq.
~3.19a!#

F~ t,z̄j !v j50. ~C9!

Equation~C6! then implies that

z̄j52z̄ j ~C10a!

and

v j5C21S 0

b̄ j

1
D 5S 1

i b̄ j /A2

2 i b̄ j /A2
D . ~C10b!

The other dressing data,zj andw̃j , can be obtained from the
symmetries~3.25!.
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@24# J. Cieśliński, J. Math. Phys.36, 5670~1995!.
@25# M. J. Ablowitz, Stud. Appl. Math.58, 17 ~1978!.
@26# M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evo-

lution Equations and Inverse Scattering, London Mathematical
Society Lecture Note Series Vol. 149~Cambridge University
Press, Cambridge, 1991!.

@27# R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,
Solitons and Nonlinear Wave Equations~Academic Press,
London, 1988!, Chap. 6.

@28# M. Wadati, J. Phys. Soc. Jpn.34, 1289~1973!.
@29# B. G. Konopelchenko, Phys. Lett.87A, 445 ~1982!.
@30# F. Calogero and A. Degasperis, Physica D14, 103 ~1984!.
@31# G. Neugebauer and R. Meinel, Phys. Lett.100A, 467 ~1984!.
@32# X. Zhou, SIAM ~Soc. Ind. Appl. Math.! J. Math. Anal.20, 966

~1989!.
@33# M. Leo, R. A. Leo, G. Soliani, and L. Martina, Inverse Prob

2, 95 ~1986!.
@34# A. V. Mikhailov, Physica D3, 73 ~1981!.
@35# T.-S. Ho and H. Rabitz, Phys. Rev. A37, 1576~1988!.
@36# M. Abramowitz and I. A. Stegun,Handbook of Mathematica

Functions, 9th ed.~Dover Publications, New York, 1972!.
@37# E. L. Hahn, Phys. Rev.80, 580 ~1950!.
@38# H. C. Torrey, Phys. Rev.76, 1059~1949!.
@39# S. V. Prants, Phys. Lett. A144, 225 ~1990!.
@40# A. V. Alekseev and N. V. Sushilov, Phys. Rev. A46, 351

~1992!.
@41# D. E. Rourke and J. K. Saunders, Phys. Lett. A212, 72 ~1996!.
@42# S. V. Manakov, Zh. E´ ksp. Teor. Fiz.65, 505 ~1974! @Sov.

Phys. JETP38, 248 ~1974!#.


