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The Bloch equations, with time-varying driving field, afd relaxation, are expressed as a scattering
problem, withI',=1/T, as the scattering parameter, or eigenvalue. When the rf pulse, describing the driving
field, is real, this system is equivalent to théx2 Zakharov-Shabat eigenvalue problem. In general, for
complex rf pulses, the system is a third-order scattering problem. These systems can be inverted, to provide the
rf pulse needed to obtain a given magnetization response as a funcfignlaofparticular, the class of “soliton
pulses” are described, which have utility &g-selective pulses. For the third-order case, the dressing method
is used to calculate these pulses. Constraints on the dressing data used in this method are derived, as a
consequence of the structure of the Bloch equations. Nonlinear superposition formulas are obtained, which
enable soliton pulses to be calculated efficiently. Examples of one-soliton and three-soliton pulses are given. A
closed-form expression for the effect ®f relaxation for the one-soliton pulse is obtained. The pulses are
tested numerically and experimentally, and found to work as predit®dd63-651X98)03006-3

PACS numbes): 42.65.Tg, 03.65.Fd, 03.86r, 33.25+k

I. INTRODUCTION of angular velocity. Let the unitary matrix describing the
evolution under this Hamiltonian be. Then the time de-
This paper is concerned with the determination ofrivative of U is U=(1/iA)HU, and the quantityM
T,-selective pulses for systems obeying the Bloch equationssUgU ", where o is any linear combination of the;
(with time-constant coefficientshas the form

am _
W=Am+b, (1.1a ms my—ims,
M= m1+im2 _m3 ’ (12)

where

T — ot ) 0 with my, m,, andmjg real. It is well known that the vector

2 w3(t) oy m'=(m,,m,,m3) evolves in time such that its instantaneous
A= w3(t) -y, —wq(t) and b= 0 angular velocity about the origin i€(t), and hence that it
_ _ ) obeys the Bloch equations with;=1",=0. Furthermore,
wy(t)  wa(t) Iy Iy

suppose the system is initially at thermal equilibrium, with
(1.1  (time-constant Hamiltonian Hy=3%o. Then the density
matrix is p=(1/Z)exp(—Hy/kT) at temperaturel, with k
These equations are found in studies of nuclear magnetigie Boltzmann constant, aithe partition function. Hence,
resonancénmr) [1-3], electron paramagnetic resonandg in the high-temperature regim®| is proportional to the ex-
quantum electronicg§5], and optics[6]. In nmr, m(t)T  cess over the scalar part of the density matrix, both at ther-
=(my,m,,m3) corresponds to the bulk magnetization of the mal equilibrium, and subsequently, after the application of a
sample, which is taken to have an equilibrium valuendf  driving field, when the Hamiltonian becomes time varying.
=(0,0,1) (T denotes the transpose of a vector or matrix (The scalar parp of p is defined byp = ps+ po, Wherepg is
Q1) "= (w4(t),w,(t),w3(t)) is the driving field of the sys- a multiple of the unit matrix, angd, has zero tracg Thus the
tem. It is usually decomposed into the complex radiofre-vectorm represents this excess, or “polarization.”
quency (rf) pulse w=w,+iw, and the detunindor reso- In nmr, for a nucleus with spig in a magnetic fielcH,
nance offsetws. The constant¥'; andl’, are theT, andT,  the quantityQ defining the Hamiltonian equats yH, where
relaxation rates, respectively. This terminology will be used,y is the gyromagnetic constant of the nucleus. In practice,
even though the results are not specific to nmr. the object whose nuclei are being studied is placed in a
In more detail it is well known that any two-level system strong, time-constant, spatially uniform field (¢§@), and a
in the presence of a driving field has a Hamiltonian of themagnetic field 2 cost (H4(t),H,(t),0) is applied in the
form H=3#Q"To, where # is Planck’s constant,e”  x-y plane.wy is chosen to be equal, or very close, to the
=(01,0,,03) are the Pauli spin matrices, an€)” transition frequencyw, of the system under justl, i.e.,
=(wy,w,,w3) IS a time-varying vector of scalars with units wy=—yH, (the sign indicates the sense of rotationnof
about thez axis), and in practicev; will be radio frequency.
H, and H, are slowly varying functions describing the
*Permanent address: Department of Physics, University oenvelope of the applied alternating field. Under the rotating-
Nottingham, Nottingham, England N672RD. Electronic addresswave approximatior{7,8], and in a frame rotating ai
rourke@magres.nottingham.ac.uk about thez axis, it is well known that the Hamiltonian has
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the same form as before, but naw, w,, andw, in Q are  relaxation ratd';, the Bloch equations can be easily solved
given by w;+iw,=w=—y(H;+iH,) and ws= wy— ;. with these conditions to find the evolution wk. In particu-

It has been showii2] that the Bloch equations in the & at7=(1/T'1)In2, the magnetization will be (0,0,0), i.e.,
rotating frame are appropriate in many cases to describe tH8€¢ magnetization will be nulled. Spins with differemy
evolution of a system of nuclei with spin greater thaand relaxation rates will not be nulled at that moment, and hence
in the presence of spin-lattice and spin-spin coupling. Thecar’]\lbée ?Eticttﬁig'method also allows the measuremertt. of
latter two effects are described by relaxation rdtegndI’ 5, ote tha L

. . ; for a spin specief22]. The period of free precessianfol-
respectively. The quantign then describes the bulk magne- lowing F?[he wphard%u]lse is \[/)aried After ea?ch such period, a
tization density, only the transverse component of which : y

) : . ) X .~ hard /2 pulse is applied to flip any magnetization from the
l.e., my+im,, can be detected in a receiver coil, which is axis to thex-y plane, and the magnitude of the signal is
placed around the sample. , measured. Since the variation of the signal witfs due to
Hence, most nmr experiments attempt to align the magg,e yajue ofT,, its value can be calculated. This is called an
netlzathn _of all the nuclei that are of mtergst alor!g a COM4pyersion recovery sequence.
mon axis in thex-y plane, and to leave uninteresting spins  Thjs decoupling of evolution to periods of just rf pulse
along thez axis. For example, the signal due &1 spins  and to just free precession is done because these regimes are
from a dilute solute would be dominated by that from fi¢  more completely understood than the general case of both
nuclei in an aqueous solvent. Since, in many cases, the resgme-varying rf pulse and relaxation together causing the
nance offsetw; of solvent spins differs from the solute spins evolution. Since it may not always be valid to neglect relax-
(because the nuclei are in different electronic environments ation during an rf pulse, and since the selectivity of existing
rf pulses have been designed to “selectively excite” spinsrelaxation based schemes is not very flexible, it is useful to
according to their resonance offset. consider the design of rf pulses that work simultaneously
When relaxation is neglected, the design of such “fre-with relaxation to obtain selectivity.
guency selective” pulses is a solved problem. The most ef- In this paper, T, relaxation will be neglected, except
ficient approach is to reduce the Bloch equations tox€22 qualitatively and for a special case, see Secs. IV B and IV C.
scattering problem—the Zakharov-Shal{dS) eigenvalue SinceT,>T, for many systems, this is often a valid assump-
problem[9,10—and then further reduce this problem to the tion. Also, w5 is not a parameter used to select particular
calculation of soliton pulses, which in this context meansspins, but is considered part of the driving field. That is, all
pulses that return magnetization initially at (0,0,1) back tospins see the sames; (which can be allowed to be time
(0,0,1), irrespective of the resonance offgkt—-13. varying).
Sometimes, it is more convenient to select spins accord- It is then easily shown that, by suitably choosing the ref-
ing to their relaxation behavior—usually because the spins terence framews(t) can be made identically zel@ee Ap-
be distinguished are not well separated by their resonanggendix A). Its effect can be “absorbed” as a time-varying
offsets. A typical application is in magnetic resonance imag-extra phase of the rf pulse. Henceforth, it should be assumed
ing, where the signal fromtH in fat is often inconvenient, that this choice of reference frames has been made.
whereas the signal from water is desired. The general method The soliton pulses mentioned above also occur in the con-
is to null the magnetization, in some way, of the spins not oftext of designingT,-selective pulses. In general, a soliton
interest, i.e., make their final magnetizatiol=(0,0,0). If  pulse means one whose associated scattering matjixlis
the method is to work, the other spins will have a non-nullagonal (these terms are defined IlgteHere, however, it
magnetization at this instant—often the method is designedhould be taken as meaning a pulse that, given an initial
so these spins all have magnetization alongztagis. These magnetizatiorm'=(0,0,1), results in a final magnetization
can then be detected with a short, intense, constant phase,mf = (0,0m(I",)), where
pulse of total angld |w| dt= /2 to flip these spins into the
x-y plane.[Such a pulse is called a harel2 pulse. Assum-

ing the rf field is applied along the axis, it is ideally rep- _ﬂ FZ_iZ; 13
resented by, (t) = (m/2)5(t), whered(t) is the Dirac delta m3—j:l Iy—iz;’ 1.3
function|]

Existing schemes of spin selection via relaxatit4—19
(and also of spin contra$0,21]) work by having short rf  for a spin species witfi, relaxation ratd’,. Here, thez; are
pulses, where relaxation is neglected, and separate periodsiofthe upper half complex plane, ardmeans the complex
free-precession, i.e., where no rf is applied and the spinsonjugate. Hence, for a suitable choicezpf m can be made
evolve only due to the field along the axis, and due to zero for particular values df,, and thus a soliton pulse can
relaxation. be used to null the magnetization of spin species with these

An example of aT;-selective method is the use of “in- values(there will be a zero ofn; for eachz; on the positive
version nulling,” i.e., the water eliminated Fourier transform imaginary axis.
(WEFT) and the driven equilibrium Fourier transform  This paper is mostly concerned with the calculation of
(DEFT) techniqued14-17. In the simplest versiofl4], a  soliton pulses. For the special case wheft) is real, i.e.,
hard 7 pulse is applied, causing all magnetization, assumea,(t) =0, it shows that the Bloch equations can be reduced
to be initially at (0,0,1), to be rotated to (0;01). It then to the ZS problem, and hence existing, well-known methods
starts relaxing byT'; relaxation towards the positiveaxis. may be used to calculat&,-selective (not just soliton
Suppose it is left to free precess for a timeFor a spin with  pulses.
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In general, though, the system must be treated as a third'scattering data” of the system. For each such set of scat-
order scattering problem, withi, as the scattering param- tering data, a “potential’q(t) may be uniquely determined
eter, andw(t) as the “potential.” [9,10,25-2T.

A powerful technique, the dressing methi@8,24, may Suppose the ZS systef@.4) has scattering coefficients
be used to construct a ladder of soliton pulses. In order t(¢) b(¢),a(¢),b(¢) for real . It also has bound states,
?pply thisbrlnethod, WhtiCh. if aﬁplicibli tof gendenad r][hscat- iven in standard notatioftL0], by data{¢;,b;,¢;,b;}. For
ering problems, constraints have to be found on the paranj; _ ;
eters, or “dressing data,” used in soliton pulse constructioncz)(?nmp{)eli'pﬁgi%_ egiictgef;engeéé é)g) qlr}stgirgﬁ/p?eravailtf

It is also necessary to connect the dressing data tolthe e ks oy
selectivity of the pulsessince it is the latter that will be ¢an be shown thaf10,28 b(¢)=b"(¢")=b(=¢), a(f)

specified. Finally, an efficient method of calculating these =a@*(¢*)=a(—{¢), {;=¢} , andb;=b; . Also, the{; occur
pulses, using “nonlinear superposition formulas,” will be in pairs (;,—¢}), or lie on the imaginary axis. For g on
given. the imaginary axish; is pure real, else itis in & ,b}) pair.

The jth step in the ladder of soliton pulses is made given Thus, for real{ and assumingj(t) is absolutely inte-

dressing datgz; Ej,v,- ,\7\,1.}, wherez, and?j are complex grable, if the ZS system has ax2 fundamental solution

numbers, and; andij are vectors. Appendix B proves that with asymptotic behavior

all the z;, andz;, may be taken to be in the upper, and e it 0
lower, half complex planes, respectively. Appendix C gives V—>( 0 et
the connection between the calculation of pulses via the re-

duction to the ZS problem, to the calculation of the same; will have behavior
(necessarily realpulses via the dressing method.

) ast— —o, (2.59

ae_igt _Ee*i{t

V— . _.
Il. REAL PULSE beidt aeitt

) ast—oo, (2.5b

If the rf pulse w(t) is real, system(1.1) decouples, and

can be reduced to @22 system. For,(t)=0 andl’;=0, Then the corresponding solution to Eg.3), with bound-
Eqg. (1.1) can be rewritten: ary conditions(2.2), can be shown to be
m, r, 0 0\ /m my— —b(—iT,/2)e 2, (2.63
? o -I, - =
| M| = 2 Tor|| M) (20 Me—a(—iT,/2), (2.6b
m3 0 w1 O m3 _ o
ast—oo, Itis assumed here tha{ ) andb(¢) are defined at
Hence, assuming {=—iT',/2. For absolutely integrable(t), a({) can be
analytically continued from the real axis to the whole lower
0 half complex plane, including=—iI",/2 [10]. In general,
m—| 0|, (2.2 b({) exists for reall, and can be analytically continued to a

strip surrounding the real axis, the width of the strip below
the real axis depending on the rate at whief(t) decays to
zero ag—oc [10]. b also exists at the “bound states” of the
system in the lower half complex plane, i.e., at the zeroes of

T, a({) in the lower half plane. o
P m, Ty T , A useful class of pulses existshif{({) is zero throughout
| arati2 - I'pt/2 ; : .~ —
pr e (m3” r, e (ms)} its strip of analyticity. Thera({) has the form
wq - m *
2 — {— ¢
a()= , 2.
2.3 ) J_1;[l =5 (2.7)
But this is a special case of the Zakharov-Shabat eigenvalug, + real and in the lower half complex plane. This corre-
problem(9], sponds to a final magnetization response
dv (=i —q(t) m;=m,=0, (2.89
—v=( . , (2.9 v
ot q(t) i1 m P
dentifvi . . me=[] =——, (2.80)
identifying {=—iI",/2 andq(t) = w1 (t) =q*(t). j=1 I'p—2ig

The ZS problem has been extensively studied both as a ) )
forward problem, where the behavior of is determined, and hence these pulses belong to the soliton class described
given the parametef and functionq(t), and as an inverse in the Introduction. It is well known how to invert the ZS
problem. Here, the behavior of is specified by giving the problem fora(¢) [anda({)] zero for reall. Methods such as
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the Backlund transform11,29,3Q, or the dressing method of treat the system as a third-order scattering system, and use

Neugebauef31] are particularly efficient. more general techniques than for the ZS problem to find rf
pulses. As described in the Introduction, pulses in the soliton
lIl. THE GENERAL CASE class will be calculated using the dressing method.

It is convenient for this method to change variables in Eq.
For a complex rf pulse, it is not possible to reduce systen{1.1) so that the Hamiltonian becomes traceless. Then, since
(1.1 to a linear system of lower degree. It is necessary td';=0 andws(t) =0,

My 2T,/3  —iw* N2 w2 ms

J

" 2B m | [ =| —iw/y2 —T.3 0 2Bl m | |, (3.9
m* iw0*/2 0 ~T,/3 m*

wherem=(1/y/2)[m; +im,], the factor 1{2 being chosen with given boundary conditions, then there exist® g re-
so that the matrix in Eq(3.1) has a symmetry about the lated to®, by
leading diagonal.

Let ® be the fundamental 83 matrix solution to Eq. ©,=[1+R/({=2)]Py, (3.9

(3.1). Then® is the solution to the scattering system, o )
and that has a similar evolution tby, namely,

b
—o=[1E+VO]®(1,0), (3.29 oD,
—r =3+ VA1 (t,0), (36
where {=—iT", is the scattering parameter, or eigenvalue.

Here, J is a time constant, traceless diagonal matrix withwith boundary conditions determined below, and with

elements down the diagonal in nonincreasing order, .
Vl_V0:|[R,J]. (37)

213 0 0
_ _ Here,R(t) is annX n matrix, to be determined. It is obtained
J={ 0 vs 0, (3.2 in terms of®, z (which is whered, becomes singularand
0 0 -13 some other parameters. The set of parameters needed to de-
termine®, given ®, will be called “dressing data.”
Thus, given a known solution to an equation of the form
Eq. (3.4), a ladder of new solutions can be built up. Since the
matrix dressing operatdR is known in terms of the known

and V, the “potential,” is a time varying, absolutely inte-
grable, “J-off-diagonal” matrix [32]. Being J-off-diagonal
means that there exists a maté¢ such thatV=[J,W]

=JW-=WJ. Since solution®,, both®, andV; may be explicitly determined.
o : This process may then be repeated, with a new marix
0 02 T0l\2 determined in terms ofb;. Typically, the initial system is
v=| —iw/\2 0 0 ,  (3.20  the “vacuum,” whereVy(t)=0, and hencab(t,{) may be
iw*/\2 0 0 taken as exp¢Jdt]. This ladder is then called a “soliton-
ladder.” That these are solitons as defined in the Introduc-
a possible choice oV is tion is shown in Sec. Il C.
It can be showri24,33 thatR satisfies
0 —iw'\2 w2
. dR — )
w=| iwl/\2 0 0 |. @33 Gt = Lo(DR=RLy(2) +iRJR (3.83
—iw*/\2 0 0
and
It is important thatV is J-off-diagonal, since the dressing
method naturally constructs such potentials from the R2=(z-2)R. (3.8b

“vacuum,” as described belosee especially Eq3.7)].
Here,Ly({)=i¢J+V,, and the time dependence in quanti-

A. The dressing method ties above is not shown explicitly unless needets another
The dressing method states thatdif, is the solution to Parameter in the dressing method, and is most naturally
the, in generalp X n scattering system taken asz=z* for the system3.2), as shown later. Further,

z is assumed to be off the real axis. Given this assumption, it
is shown in Appendix B that may be taken, without loss of

Py
ot~ LI+ Vo(O]Po(t.0), 3.4 generality, to be in the upper half complex plane. Hence,
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solutions in the soliton ladder may always be chosen to bé (up to an arbitrary scale facfoan “undressed” constant

analytic in the lower half complex plane.
This result is not surprisingl in Eq. (3.2b has only two

projection matrix with a one-dimensional image.
Then,

distinct elements on the diagonal. It is therefore reasonable

to expect that the fundamental solutidnwould share some

analytic properties with the solution to thex2 ZS problem.

One property of the latter is that the fundamental solution
may be chosen to be analytic in the lower half complex

plane. o
Under the assumption thatis off the real axisz—z+0,
and then Eq(3.8b implies that
R(t)=(z-2)T(1), (3.9

where T(t) is a projection matrix, i.e.72=T. Thus, Eq.
(3.5 can be rewritten

Z2—Z.
1+ TZT(t)}QDO(t,g) (3.103

(I)l(tvg): g

or, inversely,

Oo(t,0)= 1—%?0) Oy(t,0).  (3.10b

The change iV, i.e.,V;—V, can be rewrittedEqg. (3.7)]:

V,—Vo=i(z—2)[T.J]. (3.11)

Further, the image and kernel ®fcan be shown to have

the general fornj23,24
im T=®y(2)v, (3.123

kefT=dy(z)w, (3.12h

. Do(2vW' Dy (2)
= s (9o (3162
=T/tr(T), (3.160

where tr(T) denotes the trace af. Note that, herew is an
n-component vector that is uniquely defined, up to an overall
scale factor.

If T is a two-dimensional projection, then-1I is a one-
dimensional projection, with image and kernel equal to the

kernel and image, respectively, & Then,
Do(2)Wo D, L(z)

1-T== — ,
0T, Y (2)Do(2)W

(3.17

wherey is defined in the same way aswas above, that is
v is the space orthogonal i, in this case it is a uniquely
defined vectoup to an overall constant multiplierDefin-
ing T'=1-T, and from Eq.(3.103,

Z—Z -,
1+ E(l—T ) [ Do

1+ 2% | @, =
+E 0=

_E EA/
B §—;[1+ (-2

Hence, using a two-dimensiongiwith (z,?), in the dressing
data is equivalent to using a one-dimensiohalwith (z,z)

in its dressing data. Therefore, for systé&2), T may al-
ways be taken to have the form of E@.16), i.e., it may

Dy. (3.18

with v andw constant vector spaces. Hence, they are giveWays be taken to have a one-dimensional image.

asnxd andnX(n—d) matrices, wheral is the dimension

of the image ofT, with each column of the matrix a linearly
independent vector in the respective space. Then, the general

form of T is

T=dy(2)0[W Dy L (2)Do(2)v] WD, (2).
(3.13

Here, w refers to the space orthogonal g i.e., it is an
nx d matrix such thatv"w=0. Note thatv is not a uniquely
defined matrix. However, the value df is independent of

the choice of the forms of botw and ofv.
However, for the X3 system considered herd, must

equal 1 or 2, ifT is to be nontrivial. Ifd=1, thenT can be
written more simply. Since, fal=1,w'®, }(2)®y(2)v is a
number, it is convenient to define

T(t)=Dy(t,2)PD, L(t,2), (3.149

where

P=ovw' (3.19

Returning to the generatXn system, it follows from
Egs.(3.10 and(3.12 that

®,(2)v=0, (3.193

;Y (2W=0. (3.199

That is, @, andCIDI1T become degenerate &tz and{=z,
respectively, withv andw giving the linear dependence of
the columns. Typically, the dressing method is used to create
an “m soliton” &, as the final rung in the ladder
@y, P4, ...,P,. Each®; is determined fromd;_; by
specifying dressing datg={z;,z;,v; ,W;}, i.e., by specify-

ing the extra degeneracy df; over®;_;. Assuming eaclz;

is distinct from all otheg; andz;, this degeneracy cannot be
taken away. Hence,

®(z))v;=0, (3.208

1T ~

for j=1,... m. Therefore, the order in which thg are
specified is not important. Actually, thg can be split up
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into'sj+={zj ,\7vj} andsj_={?j,vj} and these can be paired zj=7, (3.253
up in any order. The sam® ., will result. This ability to
build up anm-soliton using dressing data in any order is the Wi=p* (3.25h
. . . ] j 1 .
basis of the nonlinear superposition formul&8].
and either
B. Symmetries z; is purely imaginary anav;=B " 'v;,  (3.250

For the systen{3.2), there are constraints on the form of or
the Hamiltonian. Define

Lin(t,0) =123+ Vy(1). (3.21) z; occursin &zj,z,=-1z) pair,
which corresponds to the evolution &, the final soliton with v,=Bw; and w,=B1v;. (3.259
constructed by the dressing methd, is the corresponding o _ ' '
potential.L ,, has the following symmetries: Further, by considering how imposing the above condi-

tions (3.29 gives rise to symmetries on the dressed projec-
tion operators‘T'j used to determiné; from &, _4, it can be

Len(t,{)=—L1(t,0"), (3.228  shown that these conditions are sufficient to give the desired
T . symmetries orL,,. Notice, though, that constrairi8.25d
Lm(t,d)=—BLy(t,=B" %, (322 allows intermediateb; to exist that do not have the same

symmetries a®,, [Egs.(3.29)].
Finally, the form of Eqs(3.2) implies that eachy; (and
hencer,—) may be normalized so that its first component is
1 0 O one, i.e.p; has the formy; =(1,aj,,a;3). Such a normaliza-
s=l0 o 1| (3.229 tion would~only be impossible if the first compongntz.qf,
and hencav; , were zero. Then the undressed projection ma-
010 trix P; defined by Eq(3.19 would be nonzero only in its

Of courseB=B"1, here, but the constraints Eq8.24 and  lower 2X2 block. Thus the dressed projection matiix
(3.25 below hold for generaltime-constant, invertibjeB. ~ Would also have this structure, and hence would lBago-
Studying how such constraints affect the allowed dressingal, i.e., by definition[T;,J]=0. Thus, the subsequent ap-
data is known as a reduction probl¢a,34). Note that only  plication of the dressing method would not change the po-
the constraints upor.,, will be considered, and not the tential. Thereforey; must have a nonzero first component if
Hamiltonians of solitons lower down the ladder, since ulti-the dressing method is to have a nontrivial effect, and so the
mately only®,, andV,, are of interest. above normalization is valid.
It is well known[34] that the symmetrie€3.22) give rise
to automorphisms on the solution sets to syst&8m). This
means that ifb,, has asymptotic behavior, C. The asymptotic behavior of the system

where T denotes the Hermitian transpose, and

D (t,0)— A0 (3.23 In order to determine the effect of time-soliton potential
V(1) calculated by the dressing method, the behavior of
ast— —, then Eqs(3.229 and(3.220 imply, respectively, Ppn(t,{) ast— = must be determined.
Consider an intermediate soliton solution of syst&®?),
®;_4(t,). It will, in general, have asymptotic forms

—_ag-17 *\ AT ox
(Dm(trg)_q)m (t,g )Am(g )Am(g)! (3243 eithAj,l(g") as t— —oo

(I)j_l(t,Z)H ei{JtSj—l(g)Ajfl(g) as t—e
(3.24 o

Assume thatb,,, is normalized so that! (:*)An({)=1  for real £, whereS;_;({) is the “scattering matrix” of the
and Al (—)B *A,({)=B"1. This can always be done. System.

®(t,0)=BD Y (t,— DAL~ 0)BAL(D).

Then, by considering Eg4$3.20), it follows that the above The dressed projection matrfkj(t) used to determine
constraints orb,, imply (modulo reordering, and scaling of ®(t,{) will then have asymptotic form@vhich are indepen-
the vectors by arbitrary constajptéor j=1, ... m, dent oft),

[1A_1(z)PjA y(z)1 1t -] ast——w

:rl'(t)% p— = -1 -1
[1+S],1(ZJ)A],1(ZJ)P]A]71(ZJ)SJ71(Z])1+]/U[ . ] aSt—>0°,

(3.27
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where Pj=v;w/, and{z;,z ,v;,w;} are the dressing data ms g2l
used to construc®;. The notationX/tr[ - - - ] stands forX e2latB3l m | 0 (3.32
divided by its trace. The matricds andl1_ are - 0 '
1 00
ast— —o,
;=10 0 0}, (3.289 However,® (t, ) — exdiIt]Aq(0) ast— —, and so
000 e2lot/3
0 0 Dt —iC)AL(—iT)e;—| O (3.33
1.=|0 1 0. (3.28h 0
0 0 1

ast— —, wheree] =(1,0,0).
The above results rely on the fact thiatn Eq. (3.2) has its Hence, the magnetization response is relate® {0
elements in nonincreasing order, and thats in the upper

half complex plane, witlg;=z; . The particular structure of M3 A
1, and1_ follows from J having a unique highest element, m | =e 228 (t,—iT,)A(—iT,)e;.
and two equal lowest elements. m*
The asymptotic form$3.27) can be written as (3.34
0 Therefore, after the rf pulse(t) corresponding to the soli-
s | ast—o—o ton potentialV,,(t) via Eg.(3.29, is applied,
A i
Ti(t)—4 (. (3.29
. T/ m
ast—o, m|—e 2F2t/3eF2JtSm( —i FZ)él
m*

where 0 signifies a zero matrix of appropriate sﬁ{a, is a

2X 2 matrix, andT; is a number. Clearly]* =1, as it must 10 0

J oo —T,t . ~
have a trace of one. Here, and later, a matrix in square brack- —| 0 e 0 Sn(—=il'y)e;, (3.3H
ets signifies that it is built up from smaller matrices or vec- 0 0 eIzt

tors, as well as numbers, in an obvious way.
The asymptotic forms ob;(t,{) can then be shownto be ast—oe. Just as in Sec. Il, the elements 8f({) are, in
general, not defined over the whole compleglane. LetS,,

e'A(() ast——o have S\ as the element in row and columnj. Then the

¢ tH— e'Y'S(DAj(L) ast—, (3.39 elementS+? is defined for real, and may be analytically
continued to the entire lower half complex plarg? and
where S3D are defined for reaf and may be analytically contin-
ued to a strip surrounding the real axis.
1 For real{, Eq. (3.31b allows the calculation of5,({).
A(0)= Z —?,-A_ A1(0), (3313 From Eg.(§.35), only its first column is of interest. Since
I+ 75T T/=1,itgives
]
m _
_ {—z
T ' — - jljl {—z
S()= (-7 Sj-1(0) 14745 | Sm({)er= 0 , (3.36
1 {—z !
(3.31h 0
where the 1's are unit matrices of appropriate size. and hence
Given a “vacuum” solution®y=exgi{dt], then Aq({) o _
=59({)=1. The final A, ({) and S, (¢{) can then be ob- m Iy—iz;
tained via Eqs(3.31). Note that all the5; will be J diagonal. 3 =1 To—iz
Equation(3.31b gives the connection between the calcu- m|— (3.39
lation of the soliton potentialV,,, and the calculation of m* 0
T,-selective pulses. Thm-soliton solution®,,, is a funda- 0

mental solution to the traceless equation of motion of the
magnetization, Eq3.1). Now assume that the initial magne- ast—o. This expression is correct even-fil’, is outside
tization ismg=1, m=0 for all I',, i.e., the strip of analyticity referred to above, as then the trans-



57

verse magnetization will still decay to zerotas «, and the
expression fom; is correct for alll.

Therefore, after the application of the rf pulse, the mag-

netization will once again lie on theaxis. Them; response
must take the form

m

Fz_ |Z*
m3<r2>=jlj1 '

FZ_iZJ'

(3.39
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) 2y~ 25, | Z,— 2,
21— 123 21— 12y
(3.400

As previously,X/tr[ - - - ] denotesX divided by its trace.

Consider now the problem of building up tme-soliton
potential V,, from the vacuum. This can be done by con-
structing a lattice whose base is the vacuum. For example,
for m=3, the lattice would look like

with z; in the upper half complex plane. Hence, the dressing
method indeed creates soliton pulses as defined in the Intro-
duction. It also demonstrates that the general definition of
soliton pulse[one whose scattering matrix & diagonal

corresponds to the specific definition used for this system
[one whose final magnetization response has the form of Eq.

Do

N\ S1
®,

(3.37].

D. Computing the soliton potential

Given the set of dressing datg={z ,?J-,vj ,ij} for j

=1, ... m, the most straightforward way to numerically cal-

culate the soliton potentidf,(t) is with nonlinear superpo-

s

N\ S3

o, D193.

sition formulas. This method obviates the need to determine

any ®;, for j>0. Only the'i'j are needed, and they can be

easily determined from previously caIcuIat%p.

Nonlinear superposition formulas are well known for the

ZS problem[29] and for higher-order systeni83]. The for-
mulas given below are specific to systems where alﬁthe

have one-dimensional images. However, they are computa-
tionally advantageous, as no matrix inverses need be calcu-

lated, unlike those in Ref33].

Consider a fundamental solutich to system(3.2). Let
®,, be the solution after the addition of dressing dgtand
s,. &4, can be obtained in two ways, represented as

o,
51,T1 / \; 327T12
(I) (D]Q.
. . (3.39
sz, 15 AV /! s1, 1oy
O

Hence,®,, is created via intermediate solutiods, or ®,,
corresponding to adding dressing data in the osjes, or
S,,81, respectively.

Given the general form of th& projections[Eq. (3.16)],
it is straightforward to show thak,,, the projection needed

to go from®, to 4, is
?12=| }/tr[]
(3.40a

Similarly,

21_?1
1+ =
2—7

21— 7.
=T,
-7

T[T,

1_

) \y S3 N sy

Po

Ny 83 " sg

P3

/‘33

o (3.41)

Here, each element in the first column represents the
vacuum solution®,=ex(i{Jt] at a given timet. The sec-
ond column represents solutions where a single soliton has
been added via,, s,, oOr S3.

TheT projection matrices needed to go from Wg's to
the second column can be easily obtained, given the dressing
datas;, j=1,...m, and Eq.(3.16. Then the projection
matrices to get to the 2-soliton solutions in the third column
may be determined from the nonlinear superposition formu-
las, Egs.(3.40. This is repeated until the end of the lattice
has been reached. Finally, thresoliton potentiaV,(t) may
be obtained from

vm<t)=i;1 (z}—7)[T1p..;,d], (3.42

where 'T'lz,,,j is the projection matrix needed to go from
®i5...(j-1) to Py,...; along the top edge of the lattice. Note
thatV,, is expressed in terms only of tAematrices, and thus
the soliton solutionsb in the lattice never need to be deter-
mined.
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IV. EXAMPLES izable one-soliton rf pulse, constraif8.259 must be satis-
fied, and hence=i» andaz=aj. The associated magneti-

) o ) ~ zation responsgEg. (3.38] would be
The simplest nontrivial real soliton pulse, as calculated in

Sec. Il, would have, with scattering dqtal,gl,blﬂl}, the

A. One-soliton potential

magnetization respong$€&qgs.(2.8)] mgzrz_ 77_ (4.4)
Iy+7
m=0, (4.19
The general form of the rf pulse(t), is then
_Fz_ 7
msz= ’ (41b)
F2+ n .

o(t)=—ine'zseciyt—In(\2[az))], (4.5

where {;=i7/2 and e R". This pulse could therefore be '
used to null the magnetization of spins will,=7. The  where ¢, is defined bya2=|a2|e'¢2.
general form of the one-soliton potential is well known From Appendix C,w(t) in Eq. (4.5 should correspond
[10,27, an_d hence the real rf pulse giving rise to the abovewith that in Eq.(4.2) when azzib_l/\/z SinceEl=bI in
response Is general, and herl, is real, this prediction is easily verified.
The rf pulse calculated by the dressing method, (Bd),
b is just a trivial generalization of the rf pulse calculated by the
wy(t)= — 7 sechizt—In|b,|], (4.2  reduction to the ZS problem, E@4.2), since it just has an
|| extra constant phase. It is necessary to calculate higher-order
soliton pulses to get a nontrivial difference.

whereb, is real. The requirements th&t is imaginary and
b, is real follow from the symmetry constraints on the scat-
tering data given in Sec. Il
The general form of a one-soliton potential calculated
with the dressing method with dressing d{itaz v,wW} is Although this paper describes the calculation of pulses
whose response is a function 6§, andI’, is assumed to be
zero, in many cases this assumption is not valid. It is there-
fore useful to see the effect &f, relaxation on the one-

B. One-soliton potential with both T, and T, relaxation

0 vy vgs soliton pulse of Sec. IV A. This pulse can be taken, without
v=| vy O 0, (4.33 loss of generality, to be
U31 0 0
w(t)=secht). (4.6)

where, for example,
System(1.1), with w3=0, can be solved for this pulse.

naye M N PREPE For example, the method in R¢B5], wherel';= vy andT’,
v2(t) = — === sech[ nt—Iny]ay|“+|az|“]. =1y, can be generalized. Given the initial condition
21(t) |a2|2+|a3|2 [7 |az|“+[as|”] 2Y g
(4.3b
0
Here, z=\+i»n, with AeR and neR*, and v m(t)—| 0], 4.7
:(1,32,33). 1

The above expression assumed the constré&n?2sa and
(3.25Dh, but not(3.259 or (3.25d. To get a physically real- ast— —«, the magnetization at timewill have the form

0

2T,
T,+1

[tank(t) +2I"]f(t) —secht)[1+ 2" —2g(t)]

m(t)= , (4.8

(2T—1)(2T+1)
1
T,+1

sechit)f(t)—[tanh(t)— 2I'][ 1+ 2T — 2g(t)]
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0.4

wherel'=3 (I',—T';), and

0.2+
f(t)=,F,(1[T,+1]/2;[T,+3]/2;—e?)e",
0

g(t):2F1(1,F1/2;1+F1/2;_82t), (49) -0.2+

-0.4
with ,F; the hypergeometric functiof86].

Hence, the asymptotic form af(t) can be shown to be,
for I',<1 andl' <I'»+1,

-0.6

t) (rad/ms)

wi(

-0.8+

0 -1
ere*l—‘zt -1.24
2I';—1)si 7 r,+1) 1o 5 0 5 10
—1)sin =+ - -
m(t)— (2l 212 (4.10 t (ms)
1- mle T FIG. 1. Three-soliton real rf pulsay,(t), with dressing data
T from Eq.( 4.13.
(IF'y=T+ 1)sin(EF1)
1
ast—o. Note that in the limitl';—0, this becomesn(t)" i
—(0,0,"',—1)/(I',+1)), as expected from the previous ex- - -— - .
ample. 1=, Z1¥=7;, U= V2, W1=vy,
A useful situation to consider is a range of spin species, i
with different T, values, and with each spin species having —
I''=T5/a, wherea>1 is a constant. Imagine applying the V2
sech pulse, and examining the magnetization response at a
fixed time T, assumed large enough so thmtt) is in the 1
regime of Eq.(4.10. _
Then, as’,—0, L
. 2,=(\3+D)12, =75, v,=| V2 |, W,=uv},
i
m(T 0 4.1 _
(T)— (4.13 72
-1
Equation(4.10 is not valid forI',=1. However, it is easily 1
seen that i
0 23=(—\3+1)2, =2, vs=| V2 |, Ws=v}
m(T)—| 0], (4.12 4
1 V2
(4.13
asl',—o0.

There will therefore always be a value B, sayg,, for
which m3(T) =0, obtained by solvingnz=0 in Eq. (4.10.
This always has a unique solution fer-1 andl',<1. As«
decreases, so doegs.

In general,T,-selective pulses with oddh in Eq. (3.38
can still be used in the presence Df relaxation, provided
the corresponding shift in the value gf is taken into ac-
count. It should also be noted thaw, (andm,, for complex
rf pulses will now be nonzero after the application of the
pulse.

C. A higher-order soliton pulse

A higher-order soliton pulse was calculated numerically
using the dressing data

Note that the above data satisfy the constraints of Eqs.
(3.25. These data were chosen somewhat arbitrarily, to dem-
onstrate dressing data with omgon the imaginary axis, and
two z; as a gj,—zj) pair.

Such dressing data would lead to a magnetization re-
sponse

(Do DTt 1]
Ms(l2) = ([T, 7+ e 1

(4.19

Choosing the unit of time as 1 ms, this would select out spins

with T,=1 ms. The corresponding rf pulse is shown in Fig.

1. Note that this pulse is real, and could have also been
calculated by the method of Sec. Il.
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For soliton rf pulses, the finah; response is a function
only of thez; in the dressing data, and not of the making

up the undressed projection matrices. Further, the total “en-
ergy” of the pulse,

E= Jx lw(t)|? dt, (4.15

is dependent only on thg,. The effect of thev; becomes
apparent from the expression for the one-soliton potential
[Egs. (4.3)]. An m-soliton can be considered am one-

] AR
solitons superposed in a nonlinear fashion. However, if each 039 wa(t) t\ ; A ';’I
soliton is widely separated from every other one, i.e., the / I n(®)
values ofvavJ- are all well separated, the individual solitons \ Y,
will be independent, and hence temporally well resolved in -1- ip r T T "
the combinedn-soliton. B h

If the values ova-ij are not well separated, it is some-

times useful to still think of them-soliton as composed of FIG. 2. Three-soliton complex rf pulse, with dressing data from
individual one-solitons. For example, consider two solitonsEd: (4.16. The real and imaginary parts of the rf pulsy(t) and
superposed, With)j andel in their dressing data. |f1j wy(t), are showp together_ v_\nth the absolute _valug of the pulse,
=01, the maximum amplitude of the resultant rf pulse will |w(t)|. The functions describing the pulse are in units of rad/ms.
often be larger than it would be if the componentsvof | 2

have different phases than thosevin _ Ta/To= DIT'2/To)"~ T /Tot 1]

m = , 4.1
Consider a set of dressing data similar to that above, but all'2 (F2/To+ D[(T,/Tg)*+T,/To+1] @12
with the phases of, andv; changed,

whereI';=20/14.5 ms!. This response is plotted against
1 log,ol"» as the dashed line in Fig. 3.
For each concentration, tig was determined by a spin-
'_ echo sequenc¢37], and theT; was determined by an
=i, 7,=2,, vi= 2 . Wi=vl, ?J/girgir?n—recovery methofP2], as described in the Intro-
Given a sample, the rf amplifier was calibrated by apply-
E ing hard pulses of varying strengths and measuring the signal
intensities. Thus, ar hard pulse would correspond to the
1 first zero of the signal as a function of pulse strength. This
then enabled th&@ ,-selective pulse to be played out at the
correct amplitude. Following the pulse, a har? pulse was
22:(\/§+i)/2, ;2=Z§, vy= E , Vv2=v§, used to flip anyz magnetization into the-y plane, giving a
measure of than; component of magnetization following
the selective pulse.

0.5+

1
|
5= (—\3+D)12, 2=75, va=| V2 |, Wy=u}.
1

~il
m,

(4.19

The corresponding, complex, rf pulse is shown in Fig. 2.
This figure also shows$w(t)|. It can be seen that simply
changing the phase of the middle components p&nduv,

-0.5-

! . . . -1+
resulted in an approximately 20% decrease in maximum am- : : : : : :
plitude, without changing the pulse duration. -3 -2 -1 0 1 2
. . . logyy I'y
The pulse of Fig. 1 was tested experimentally on a series

of copper sulphate solutions with varying concentrations, FiG. 3. Dashed line: predictem, response to the pulse of Fig.
and hence varying', times. In fact, the pulse was com- 1, withI';=1/T;=0, as a function of logl",. Solid line: predicted

pressed to 14.5 ms, instead of 20 ms, and its amplitude wagsponse with';=3T",. Dots: experimental resultd’, has units
multiplied by a factor 20/14.5. The predicted response is thems™ 2.
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It was found that thd'; for these samples was not negli-  The pulses calculated here by the dressing method belong
gible, and was approximately,=3TI", for all the samples. to the “soliton” class of pulses. Such pulses can be used to
The solid line in Fig. 3 shows the response for the pulse ofeturn all spins that were initially aligned along the main
Fig. 1, but withI';=1T",, as calculated by numerically inte- magnetic field(the z axi) back to thez axis, but with the
grating Egs.(1.1), with w3=0. This curve compares very magnitude of the magnetization dependent on the sgip's

well with the experimental results, shown as dots. This magnitude can be made zero for particularvalues,
This pulse givesng=0 atI',~0.22 ms ! when there is and hence this is a way of obtainifig-selective pulses.
T, relaxation as described above. The maximum valua.of It has been demonstrated experimentally that these pulses

over all values ofl", was found numerically to be approxi- work as predicted. One application of such pulses is the se-
mately 0.038, when determined at the end of the pulsdection of a spectral line that is hidden by another at the same
Hence, similarly to the one-soliton pulse in Sec. IV B, thisresonance offset. An application in imaging would be the
pulse would be suitable asTa-selective pulse for this sys- nulling of magnetization of spins that are not of interest, e.g.,
tem. fat or water. These are normally well distinguished from
other spins by theifl,.
The T,-selective pulses designed here rely Dnbeing
V. CONCLUSION much longer thaiT,. If T, is not negligible, these pulses will
The Bloch equations are usually inverted in order to deStill work, providedT, is taken into account. Currently, this

function of resonance offset, neglecting relaxation. This pafhan the one-soliton pulse of Examples IV A and IV B.

per describes a method of exploitifig relaxation in order to Future work will include the extension of thex3 in-
null the magnetization of spins with particular relaxation Verse scattering method described here to a broader class of
rates. pulses than soliton pulses. This should enable the design of

The inclusion of relaxation with the rf pulse in the ana- Pulses with more flexible responses than that of G038,
lytic study of the Bloch equations is not né@5,38—41. For ~ Such as sharper “notch-filter” responses.
the purpose of inversion of the equations, it seems of little
practical value to obtain closed-form expressions of the re- ACKNOWLEDGMENTS
sponse, e.g., as quadratures or series expansions. Rather, it is )
useful to express the problem as a scattering problem, and Both authors thank Alexander Pines, and S.D.B. thanks

use inverse scattering techniques, such as the dressirEqB-' for fruitful djscussion. I_D.E.R. thanks _the UK Medical
method, to perform the inversion. esearch Council for financial support. This work was sup-

It is interesting to note that Manak¢¥2] showed that the Ported by the Director, Office of Energy Research, Office of
pair of coupled nonlinear Schdinger equations describing Basic Energy Sciences, Materials Sciences Division, of the
the evolution of a sum of left and right handed polarizedY-S- Départment of Energy under Contract No. DE-AC03-
electromagnetic waves through a nonlinear medium can p&6SF00098.
studied using the inverse scattering method, with associated
eigenvalue problem a generalization of E8.1). The poten- APPENDIX A: ABSORBING THE DETUNING, ws(t),

tials g, andq, used in Manakov reduce to the system here, INTO THE RF PULSE
when
The Bloch equations, Eqg¢l.1), can be written as
01=03=—iw"/2. (5.0 [ ms Ty -2 iel2 \ [m,
i . i —_ = —i (1)/\/5 iwg—rz 0 m
Hence, the properties of the scattering system describedt| o, ) .
there, namely the analyticity and unitarity of the scattering m i0*/2 0 —lws—I m

matrix form a subset of the properties derived here in Secs. r
I B and 1l C. The expression for the one-soliton pulse in !

Manakov is equivalent to that here, E4.30). The ability to +|1 0], (A1)
reduce the third order system E@®.1) to the ZS problem,

for a real pulse, is paralleled by a similar ability in Manakov

for the case of a single polarization. _ where the transverse magnetizatiom is defined bym
However, the purposes of Manakov's and this paper are. ;; prm 4 im,], the factor 12 being chosen to be con-

very dlffgrent. The former was mainly mtergs?ed in the sistent with Eq(3.1) in Sec. lll. As defined in the Introduc-

asymptotic behavior, as—o0, of a group of colliding one- tion. w=w- +iw-.

solitons(our “time” corresponds to “space” in that paper T,hen définemz’(t) and é(t) by

We are more concerned with the practical application to nmr

(and other systems obeying the Bloch equatioRgnce, we .

have constructed an explicit and efficient solution to the ei- m’(t)zm(t)exp{if 1w3(t’) dt’

genvalue problem, including a determination of the neces- t

sary and sufficient set of dressing data needed for its solu-

tion, and the relationship of the dressing data to thewheret, is the time at which the driving field ends.

magnetization response as a function of relaxation Irate Equation(Al) becomes

=m(t)e'*Y, (A2)
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L ™ -T; —i0™\2 i0'lV2\ [ m, be swapped to the paie|(,z;) without changing the/;, and

2w | = —ie'\2 -, 0 m’ rlght-muluplymg a!l the<I>.]- for j>0 by ailme-constant m.a-

o\ . _ - trix, G(¢). To achieve this, all the; andw; must be modi-

m w2 0 Iy /\m fied.
r, Since?jzzj* for this system, the above result means that,
0 without loss of generality, all thg; may be taken to be in the
+ ’ (A3) upper half complex plan€glt is assumed in this paper that

0 the z; are all off the real axi$.

Suppose a pairz(z) are to be swapped. Since the dress-
. . . . ing method can use the dressing data in any order, it can be
Hence, the evolution ah under arbitraryus(t) is equiva-  55qmeqd without loss of generality that this pair corresponds
lent to evolution in the frame defined by E@2) with w4 —
=0. to (z1,21). .
Consider the converse case. Let evolution under the rf Let ®; be the solution according to dressing dajaz,,
pulse w(t), with detuning ws(t), be denoted by wv;, andw;. Then[Egs.(3.103 and(3.16]
{w(t),w3(t)}. Given initial transverse and longitudinal mag-

wherew’ (t) = w(t)e'*®.

netization {m(ty),m5(tg)}, let this evolution lead to final 21— 24,

transverse and longitudinal magnetizatiom(t;),ms(t,)}. by=1+ g_lel}q)O' (B1)

Then by going into then’ frame, an initial magnetization

given by {m(to)e'?(0) my(to)}, with ¢(t) defined in Eq. where

(A2), will also evolve under {w(t)e'?®,0} to L

{m(ty),ma(ty)}. & _¢o(21)01WI¢61(21) B2
Hence, all final magnetizations reachable by an rf pulse- 1 WI‘I)61(21)‘D0(21)01

detuning pair{w(t),ws(t)}, are also reachable with no de-

tuning if eithere' ?'9)=1 or if m(to) = 0. In almost all cases  gimilarly, let ®; be the solution obtained fromb, with
of interest, the initial magnetization im' =(0,0,1), so the dressing datz.. 7. v’ andW’ . Its construction will re-
latter condition is satisfied. In general, it would be necessary b A 1 L g i i
to apply a detuning “blip,” ws(t)= ¢(t,) S(t—ty), where  guire the forma’qon o_f a prOJectloq matrik, , defined as in
(1) is the Dirac delta function, before the evolution underEd. (B2), but using different dressing data.

{w(t)e'*® 0}, for this to be equivalent to evolution under ~ Hence, defining

{w(t),w5(t)}. Since this blip acts to rotate the initial magne- R ,

tization about thez axis by ¢(t,), this could be replaced by G(t,)=1 (LOP1(L,0), (B3)
three rf pulse blips, i.e., hard pulses, @f orde) Ry(7/2),  hen
Ry (#(to)), and Ry(—/2). [Here, for exampleRy(7/2)

means an rf pulse blip producing a rotation of angl& 21—?1 o 21—?1 2
about they axis, and could be obtained from an rf pulse of G(t,{)=®* 1—- —=(T,+T))+ —| T,T;1|®g.
the formw(t) =i(7/2)5(t).] This follows from the identity {129 4 (B4)
Ry (0)=Rn(a@)R(O)Ry(— ), (A4) N
Hence, choosing'; such that
where, for exampleR,(a) represents a rotation @f about
a unit axism, andn’ is obtained fromn by the rotation T,T;=0 (B53)
Rn(a), i.e.,
and
n'=R,(a)n. (A5)
T,+T} is constant and diagonal (B5b)

Hence, any evolution under a nonzero detuning can be
replaced by evolution under zero detuning, possibly with ini- il Iti . functi IV that i
tial preparation of the spin system with rf pulse bligizit will result in G being a function o only, that is
these are not necessary when the initial magnetization lies S
along thez axis). G()=1— —2(T,+T)). (B6)

APPENDIX B: SWAPPING z<>z AND “UNDOING” o A ~, .
THE SWAP By definition, choosingT,+T; asJ diagonal means that

, _ _ [T,+T},3]=0. Then, sincab,=exiZJt],
The soliton ladder of solutions to EB.2) is composed of

solutions ®(t,{), j=0,1,..., and potentials Vj(t), j O UF + T 1P= T+ T B7
=0,1, ... ,with ®o=exdiJt] andV,(t)=0. Each®;, and o [T+ Ta]®o=Ta+ Ty, ®7)

henceV;, is constructed fron;_, with the dressing data from which Eq.(B6) follows. It also means, from Eq3.11),
si={z;,z;,vj,wj}. . that the potential¥/,(t) andV;(t), corresponding t@, and
For this system, it will be shown that any pag; (z;) can @, will be equal.



For the system(3.2), constraints(B5) can be solved to
give
r_ AT 5 T4
0 AT TS 15
wi=pulew; —v e fwy, (B8b)

wheree] =(1,0,0) and\ and x are arbitrary scale factors.
Explicitly,

ayb,+azb; ayb,+asbs
vi=N|  —aby | and wj=u| —ab, |, (B9
—a3b1 _alb3

wherev]=(a;,a,,a3) andw] =(b;,b,,bs). Then, it can be
shown that

1
T1+Ti= ~ } (B10)
P_
whereP_ is the projection matrix
A 1 axhy  axbs B11
T asb,+agbslagb, aghs/ (B1D
Hence[Eq. (B6)],
Z1_?1 1
G(H=1- - (B12)
{—7; P_

Now consider the addition of another soliton, to get
when starting atb,, and®; when starting atb; . The pro-

jection matrix?z needed to get frond, to ®, is, given the
dressing data,, z,, v,, andw,,

L Dz Wi D1 N(20)

2:~ — — .
Wy D1 N (2)P1(2,)v,

(B13)

The projection matrixT} to get from®; to @, is defined
similarly in terms ofz,, z,, v}, andws.

The parameters), andw; are to be chosen such tha}
=T,. This will ensure thatb,=®,G(¢), and hence the cor-
responding potentials calculated by the two rodesndV,

are the same. Sinc®;=®,G({), this implies that, forj
:2,
v/ =G Xz)vj, (B14a

(B14b)

The same argument can be made for all the subsequent pa-

rametersy| andij’ , and hence EqgB14) must be true for
all j=2.
Finally, this procedure works if more than ongZ) pair

are to be swapped. For each pair, it can be imagined that the
dressing data are reordered, so the pair to be swapped is in
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above procedure is undertaken. The dressing data are again
reordered so that the next pair is in the first lot of dressing
data, and so on.

APPENDIX C: CONNECTION BETWEEN REAL PULSE
AND GENERAL CASE

This Appendix gives the connection between the methods
of calculating real soliton pulses in Secs. Il and lll. That is,
given that such a pulsey,(t), was determined in Sec. I
with scattering datd¢;,b;,¢;,b;}, it shows what dressing
data{zj,z,v; ,ij} are needed in Sec. Ill to calculate the
same pulse.

Since all thez; used in the dressing method were chosen
in the upper half complex plane, the soliton solutincal-
culated by that method will be analytic in the lower half
complex plane. It is then natural to consider a fundamental
solution to the ZS probleni2.4) of Sec. Il that is also ana-
Iytic in the lower half complex plane.

It is well known[10] that the solutionsi(t,?) and ¢(t, )
to the ZS problem with asymptotic behavior

_ 1
<//(t,§)—>(o)e“(t as t—o, (Cla

_ 0
<;S(t,§)—><_1>ei§t as t— —o, (C1b

are analytic in the lower half complex plane. Hence define
the 3X 3 matrix-valued functionV as

1
q’:{ v —51} <
This function satisfies
- 0 0 0
=0 =il —e(t) | W(t,2), (C3
0  w4(t) il

whereq(t) in the ZS problem has been set equal to the real
function w,(t) describing the rf pulse.

Let d(t,¢) be a fundamental solution to E€B.1) in Sec.
11, built up by the dressing method. Consider

d(t,{)=ECD(t,{)C 1, (C4a
where
ei{t/3 0 0
E=[ 0 e 0 (C4b)
0 0 e*igt/G
and
0 12 142
c=| 0 —i/2 iI2]. (C40

the data for the first soliton calculated from the vacuum. The 1 0 0
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Then, since the rf pulse is reab, satisfies (BUt tg? corresponding dressing data are defined|ty.
3.19
B(t.20) 0 0 0
oPD(t, . ~
%I 0 -i¢ —oi() |B(t,2), (CH . -
noting that this is the same evolution equation as satisfied bE ) -
W (t,0). guation(C6) then implies that
Finally, it can be checked that bot#(t,?) and ®(t,27)
have the same asymptotic behavior|&s— in the lower Z=27, (C103
half complex plane. Thus, it can be concluded that ! !
W(t,{)=EC®(t,2,)C L. (cey and
Now, the scattering datg andb; are defined by10] . .
Hence, 1 —ib; /42
0
w(t.g)| by | =0. (€8 The other dressing data; and\7vj , can be obtained from the
1 symmetrieg3.25.
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